154
Views
4
CrossRef citations to date
0
Altmetric
Articles

Polylol-solution synthesis of CuInSe2 nanoparticles ink for scalable solution-based thin film photovoltaic cells

, , , &
Pages 132-147 | Received 29 Jun 2017, Accepted 31 Aug 2017, Published online: 13 Dec 2017

Rerferences

  • B. J. Stanbery, Copper Indium Selenides and Related Materials for Photovoltaic Devices, Crit. Rev., Solid State Mater. Sci. 27, 73–117 (2002).
  • K. Ramanathan, M. A. Contreras, C. L. Perkins, S. Asher, F. S. Hasoon, J. Keane, D. Young, M. Romero, W. Metzger, R. Noufi, J. Ward, and A. Duda, Properties of 19.2% Efficiency ZnO/CdS/CuInGaSe2 Thin-Film Solar Cells, Prog. Photovolt.: Res. Appl. 11, 225–230 (2003).
  • J. F. Guillemoles, L. Kronik, D. Cahen, U. Rau, A. Jasenek, and H. W. Schock, Stability Issues of Cu(In,Ga)Se2 Based Solar Cells, J. Phys. Chem. B. 104, 4849–4862 (2000).
  • K. L. Chopra, P. D. Paulson, and V. Dutta, Thin-Film Solar Cells: An Overview, Prog. Photovolt.: Res. Appl. 12, 69–92 (2004).
  • P. Jackson, D. Hariskos, E. Lotter, S. Paetel, R. Wuerz, R. Menner, W. Wichmann, and M. Powalla, New World Record Efficiency for Cu(In,Ga)Se2 Thin-film Solar Cells Beyond 20%. Prog. Photovoltaics Res. Appl. 2011, 19, 894–897.
  • C. J. Hibberd, E. Chassaing, W. Liu, D. B. Mitzi, D. Lincot, and A. N. Tiwari, Non-vacuum methods for formation of Cu(In, Ga)(Se, S)2 thin film photovoltaic absorbers, Prog. Photovolt: Res. Appl. 18, 434–452 (2010).
  • M. G. Panthani, V. Akhavan, B. Goodfellow, J. P. Schmidtke, L. Dunn, A. Dodabalapur, P. F. Barbara, and B. A. Korgel, Synthesis of CuInS2, CuInSe2, and Cu(Inx Ga1-x)Se2 (CIGS) Nanocrystal “Inks” for Printable Photovoltaics, J. Am. Chem. Soc. 130, 16770–16777 (2008).
  • Q. Guo, S. J. Kim, M. Kar, W. N. Shafarman, R. W. Birkmire, E. A. Stach, R. Agrawal, and H. W. Hillhouse, Development of CuInSe2 Nanocrystal and Nanoring inks for Low-Cost Solar Cells, Nano Lett. 8, 2982–2987 (2008).
  • T. Todorov and D. B. Mitzi, Direct Liquid Coating of Chalcopyrite Light-Absorbing Layers for Photovoltaic Devices, Eur. J. Inorg. Chem. 1, 17–28 (2010).
  • J. D. Holmes, K. J. Ziegler, R. C. Doty, L. E. Pell, K. P. Johnston, and B. A. Korgel, Highly Luminescent Silicon Nanocrystals with Discrete Optical Transitions, J. Am. Chem. Soc. 123, 3743–3748 (2001).
  • X. M. Lu, B. A. Korgel, and K. P. Johnston, High Yield of Germanium Nanocrystals Synthesized from Germanium Diiodide in Solution, Chem. Mater. 17, 6479–6485 (2005).
  • H. I. Elim, W. Ji, M. T. Ng, and J. J. Vittal, AgInSe2 nanorods: A semiconducting material for saturable absorber, Appl. Phys. Lett. 90, 033106 (2007).
  • S. L. Castro, S. G. Bailey, R. P. Raffaelle, K. K. Banger, and A. F. Hepp, Synthesis and Characterization of Colloidal CuInS2 Nanoparticles from a Molecular Single-Source Precursor, J. Phys. Chem. B.108, 12429–12435 (2004).
  • K. K. Banger, M. H. C. Jin, Harris, J. D., Fanwick, P. E., and Hepp, A. F. A New Facile Route for the Preparation of Single-Source Precursors for Bulk, Thin-Film, and Nanocrystallite I–III−VI Semiconductors, Inorg. Chem. 42, 7713–7715 (2003).
  • S. L. Castro, S. G. Bailey, R. P. Raffaelle, K. K. Banger, and A. F. Hepp, Nanocrystalline Chalcopyrite Materials CuInS2 and CuInSe2 via Low-Temperature Pyrolysis of Molecular Single-Source Precursors, Chem. Mater. 15, 3142–3147 (2003).
  • E. Arici, N. S. Sariciftci, and D. Meissner, Hybrid solar cells based on nanoparticles of CuInS2 in organic matrices, Adv. Funct. Mater. 13, 165–171 (2003).
  • C. B. Murry, D. J. Norris, and M. G. Bawendi, Synthesis and characterization of nearly monodisperse CdE (E = sulfur, selenium, tellurium) semiconductor nanocrystallites, J. Am. Chem. Soc. 19, 8706–8715 (1993).
  • Peng, X. G., Manna, L., and Yang, W. D. Shape control of CdSe nanocrystals, Nature 6773, 59–61 (2000).
  • L. Manna, E. C. Scher, and A. P. Alivisatos, Synthesis of Soluble and Processable Rod-, Arrow-, Teardrop-, and Tetrapod-Shaped CdSe Nanocrystals, J. Am. Chem. Soc. 122, 12700–12706 (2000).
  • Y. Li, H. Liao, and Y. Ding, Solvothermal Elemental Direct Reaction to CdE (E = S, Se, Te) Semiconductor Nanorod, Inorg. Chem. 38, 1382–1387 (1999).
  • X. Wang, J. Zhuang, and Q. Peng, A general strategy for nanocrystal synthesis, Nature 437, 121–124 (2005).
  • H. N. Wang, Z. Y. Guo, and F. L. Du, Solvothermal synthesis of CdSe nanorods via DEA solution, Mater. Chem. Phys. 98, 422–424 (2006).
  • Y. Liu, Y. Xu, and J. P. Li, Selective synthesis of wurtzite CdSe nanorods and zinc blend CdSe nanoparticals through solvothermal routes, Chem. Lett. 33, 1162–1163 (2004).
  • B. Li, Y. Xie, J. Huang, and Y. T. Qian, Synthesis by a Solvothermal Route and Characterization of CuInSe2 Nanowhiskers and Nanoparticles, Adv. Mater. 11, 1456–1459 (1999).
  • J. Olejnicek, C. A. Kamler, A. Mirasano, A. L. Martinez-Skinner, M. A. Ingersoll, C. L. Exstroma, S. A. Darveau, J. L. Huguenin-Love, M. Diaz, N. J. Ianno, and R. J. Soukup, A non-vacuum process for preparing nanocrystalline CuIn1-xGaxSe2 materials involving an open-air solvothermal reaction, Sol. Energ. Mat. Sol. C. 94, 8–11 (2010).
  • L. Zhang, J. Liang, S. Peng, Y. Shi, and J. Chen, Solvothermal synthesis and optical characterization of chalcopyrite CuInSe2 microspheres, Mater. Chem. Phys. 106, 296–300 (2007).
  • H. Chen, S. Yu, D. Shin, and J. Yoo, Solvothermal Synthesis and Characterization of Chalcopyrite CuInSe2 Nanoparticles, Nanoscale Res. Lett. 5, 217–223 (2010).
  • W. Zhou, Z. Yin, D. H. Sim, H. Zhang, J. Ma, H. H. Hng, and Q. Yan, Growth of dandelion-shaped CuInSe2 nanostructures by a two-step solvothermal process, Nanotechnology 22, 195607 (2011).
  • M. A. Malik, P. O'Brien, and N. Revaprasadu, A Novel Route for the Preparation of CuSe and CuInSe2 Nanoparticles, Adv. Mater. 11, 1441–1444 (1999).
  • J. Wang, Y. Wang, F. Cao, Y. Guo, and L. Wan, Synthesis of Monodispersed Wurtzite Structure CuInSe2 Nanocrystals and Their Application in High-Performance Organic-Inorganic Hybrid Photodetectors, J. Am. Chem. Soc. 132, 12218–12221 (2010).
  • M. E. Norako and R. L. Brutchey, Synthesis of Metastable Wurtzite CuInSe2 Nanocrystals, Chem. Mater. 22, 1613–1615 (2010).
  • H. Zhong, Y. Li, M. Ye, Z. Zhu, Y. Zhou, C. Yang, and Y. Li, A Facile Route to Synthesize Chalcopyrite CuInSe2 Nanocrystals in Non-Coordinating Solvent, Nanotechnology 18, 025602 (2007).
  • B. Koo, R. N. Patel, B. A. Korgel, Synthesis of CuInSe2 Nanocrystals with Trigonal Pyramidal Shape, J. Am. Chem. Soc. 131, 3134–3135 (2009).
  • J. H. Lee, J. Chang, J. Cha, Y. Lee, J. E. Han, D. Jung, E. C. Choi, and B. Hong, Large-Scale, Surfactant-Free Solution Syntheses of Cu(In,Ga)(S,Se)2 Nanocrystals for Thin Film Solar Cells, Eur. J. Inorg. Chem. (2011) 647–651.
  • H. Grisaru, O. Palchik, A. Gedanken, V. Palchik, M. A. Slifkin, and A. M. Weiss, Microwave-Assisted Polyol synthesis of CulnTe2 and CulnSe2 Nanoparticles, Inorg. Chem. 42, 7148–7155 (2003).
  • H. Liu, Z. G. Jin, W. D. Wang, Y. Q. Wang, and H. Y. Du, Well-dispersed, size-tunable chalcopyrite CuInSe2 nanocrystals and its ink-coatedthin films by polyhydric solution chemical process, Mater. Lett. 81, 173–176 (2012).
  • H. Liu, Z. G. Jin, W. D. Wang, and J. Li, Monodispersed sphalerite CuInSe2 nanoplates and highly (112) oriented chalcopyrite thin films by nanoplates ink coating, CrystEngComm 13, 7198–7201 (2011).
  • S. G. Kwon and T. Hyeon, Colloidal Chemical Synthesis and Formation Kinetics of Uniformly Sized Nanocrystals of Metals, Oxides, and Chalcogenides, Acc. Chem. Res. 41, 1696–1709 (2008).
  • Y. G. Sun, B. Mayers, and Y. N. Xia, Transformation of Silver Nanospheres into Nanobelts and Triangular Nanoplates through a Thermal Process, Nano Lett. 3, 675–679 (2003).
  • L. Stolt, J. Hedstrom, J. Kessler, M. Ruckh, K.-O. Velthaus, and H.-W. Schock, ZnO/CdS/CuInSe2 thin-film solar cells with improved performance, Appl.Phys.Lett. 62, 597–599 (1993).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.