83
Views
2
CrossRef citations to date
0
Altmetric
Articles

Study on preparation of CNTs-Cu composites materials by hydrazine hydrate reduction-solid state sintering process

, , &
Pages 32-37 | Received 25 May 2017, Accepted 31 Aug 2017, Published online: 13 Dec 2017

References

  • S. Iijima, Helical microtubules of graphitic carbons[J], Nature. 354, 56–58 (1991).
  • P. J. F. Harris, Carbon nanotubes and related structures-new materials for the twenty-first century[M], Cambridge, Cambridge University Press, (1999).
  • M. M. J. Treacy, T. W. Ebbesen, J. M. Gibsom, et al., Exceptionally high Young s modulus observed for individual carbon nanotubes[J], Nature. 381, 78–680 (1996).
  • S. Berber, Y. K. Kwon, D. Tomanek, Unusually high thermal conductivity of carbon nanotubes[J], Physical Review Letters. 84 (20), 4613–4616 (2000).
  • K. Chu, H. Guo, C. Jia, et al., Thermal properties of carbon nanotube – copper composites for thermal management applications[J], Nanoscale Research Letters. 5, 868–874 (2010).
  • Y. Q. Wang, J. H. Byun, B. S. Kim, et al., Optimization of process parameters for electrophoretic deposition in CNTs/carbon fiber hybrid composites[J], High Performance Structures and Materials V. 112, 291–300 (2010).
  • S. R. Bakshi, D. Lahiri, A. Agarwal, Carbon nanotube reinforced metal matrix composites – a review[J], International materials reviews. 55, 41–64 (2010).
  • X. Kang, Z. Mai, X. Zou, et al., A sensitive nonenzymatic glucose sensor in alkaline media with a copper nanocluster/multiwall carbon nano tube-modified glassy carbon electrode[J], Analytical biochemistry. 363, 143–150 (2007).
  • K. B. Male, S. Hrapovic, Y. Liu, et al., Electrochemical detection of carbohydrates using copper nanoparticles and carbon nanotubes[J], Analytica Chimica Acta. 516, 35–41 (2004).
  • A. Sinha, J. A. Mihailovic, et al., Modeling thermal conductivity and CTE for CNT-Cu composites for 3-D TSV application[C], 2010 IEEE Nano-technology materials and devices conference. Monterey, California, USA, (2010).
  • X. Ran, Y. Wang, R. Liu, et al., Research on the friction and wear properties of the copper matrix composites reinforced with copperized carbon fibers[J], Applied Mechanics and Materials. 556–562, 624–627 (2014).
  • N. Pierard, A. Fonseca, Z. Kenya, et al., Production of short carbon nanotubes with open tips by ball milling[J], Chemical Physics Letters. 335, 1–8 (2001).
  • S. I. Cha, K. T. Kim, S. N. Arshad, et al., Extraordinary strengthening effect of carbon nanotubes in metal–matrix nanocomposites processed by molecular-level mixing[J], Advanced Materials. 17, 1377–1381 (2005).
  • W. M. Daoushb, B. K. Lima, C. B. Moa, et al., Electrical and mechanical properties of carbon nanotube reinforced copper nanocomposites fabricated by electroless deposition process[J], Materials Science and Engineering: A. 513–514, 247–53 (2009).
  • P. Liu, J. H. Wu, D. Xu, Y. Z. Pan, C. You, Y. F. Zhang, CNTs-Cu Composite Thin Films Fabricated by Electrophoresis and Electroplating Techniques[C], 2nd IEEE International Nanoelectronics Conference. 1–3, 975–978 (2008).
  • P. Liu, D. Xu, Z. J. Li, et al., Fabrication of CNTs-Cu composite thin films for interconnects application[J], Microelectronic Engineering. 85 (10), 1984–1987 (2008).
  • W. Xu, R. Hu, Y. W. Liu, et al., Chopping current and cathode spot movements of Gra./Cu and CNTs-Cu Composites[J], Rare Metal Materials and Engineering. 40 (9), 1616–1620 (2011).
  • W. Xu, R. Hu, J. S. Li, et al., Tribological behavior of CNTs-Cu and graphite-Cu composites with electric current[J], Transactions of Nonferrous Metals Society of China, 22 (1), 78–84 (2012).
  • H. Q. Lin, X. P. Duan, J. W. Zheng, et al., Vapor-phase hydrogenation of dimethyl oxalate over a CNTs-Cu-SiO2 hybrid catalyst with enhanced activity and stability[J], RSC Advances. 3(29), 11782–11789 (2013).
  • S. Wang, P. Li, X. H. Chen, et al., Effects of growth parameters on the morphology of CNTs-Cu composite powder prepared using Cr/Cu catalyst by chemical vapor deposition[J], Rare Metal Materials and Engineering. 44 (8), 1832–1837 (2015).
  • W. X. Lei, Y. Pan, Y. C. Zhou, et al., CNTs-Cu composite layer enhanced Sn-Cu alloy as high performance anode materials for lithium-ion batteries[J], RSC Advnces. 4 (7), 3233–3237 (2014).
  • C. B. Guiderdoni, C. Estournès, The preparation of double-walled carbon nanotube /Cu composites by spar-k plasma sintering and their hardness and friction properties[J], Carbon. 13 (49), 4535–4543 (2011).
  • E. Khaleghi, M. Torikachvili, M. Meyers, et al., Magnetic enhancement of thermal conductivity in copper-carbon nanotube composites produced by electroless plating, freeze drying, and spark plasma sintering[J], Materials Letters. 79, 256–258 (2012).
  • A. K. Shukla, N. Niraj, Processing of copper–carbon nanotube composites by vacuum hot pressing technique[J], Materials Science and Engineering: A. 10 (560), 365–371 (2013).
  • W. Xue Z, D. Wang L, T. Zhao P, et al., Microstructures and tensile behavior of carbon nanotubes reinforced Cu matrix composites with molecular-level dispersion[J], Materials & Design. (34), 298–301 (2012).
  • K. Shukla A, N. Niraj, Processing of copper-carbon nanotube composites by vacuum hot pressing technique[J], Materials Science and Engineering: A. 10 (560), 365–371 (2013).
  • A. Lara-Guevara, I. Rojas-Rodriguez, R. Velazquez- Hernandez, et al., Synthesis of copper-Alumina composites by mechanical milling: an analysis[J], Materials and Manufacturing Processes. 28, 157–162 (2013).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.