57
Views
6
CrossRef citations to date
0
Altmetric
Articles

Meso-kinetics of one time relaxation electrical processes in BaTiO3 ceramics—modified Boltzmann-Poisson model

, , , &
Pages 38-50 | Received 31 Jan 2018, Accepted 18 Mar 2018, Published online: 20 Nov 2018

References

  • M. Grundmann, The Physics of Semiconductors (Springer International Publishing Switzerland, Heidelberg 2016).
  • P. M. Chaikin and T. C. Lubensky, Principles of Condensed Matter Physic (Cambridge University Press, Cambridge 1995).
  • D. A. McQuarrie, Statistical Mechanics (Harper & Row, New York 1976).
  • Z. Li-Zhi and W. Zheng-Chuan, Analytical solution to the boltzmann-poisson equation and its application to MIS tunneling junctions, Chinese Phys. B. 18 (2), 2975–80 (2009). doi:10.1088/1674-1056/18/7/059.
  • W. Heywang, Resistivity anomaly in doped barium titanate, J. Am. Ceram. Soc. 47 (10), 484–90 (1964). doi:10.1111/j.1151-2916.1964.tb13795.x.
  • W. Heywang, Semiconducting barium titanate, J. Mat. Sci. 6, 1214–26 (1971). doi:10.1007/BF00550094.
  • W. Heywang and W. Wersing, Anomalous temperature resistance characteristic of highly acceptor doped BaTiO3 PTC resistors, Ferroelectrics 7 (1), 361–3 (1974). doi:10.1080/00150197408238047.
  • Y. L. Chen and S. F. Yang, The PTCR effect in donor-doped barium titanate: Review of compositions, microstructures, processing and properties, Adv. Appl. Ceram. 110 (5), 257–69 (2011). doi:10.1179/1743676111Y.0000000001.
  • S. H. Cho, Theoretical aspects of PTC thermistors, J. Korean Ceram. Soc. 43 (11), 673–9 (2006). doi:10.4191/KCERS.2006.43.11.673.
  • V. Paunović et al., Ho2O3 additive effects on BaTiO3 ceramics microstructure and dielectric properties, Sci. of Sint. 44, 223–33 (2012). doi:10.2298/SOS1202223P.
  • V. V. Mitić, V. V. Paunović and L. Kocić, Dielectric properties of BaTiO3 ceramics and curie-weiss and modified curie-weiss affected by fractal morphology, in Advanced Processing and Manyfacturing Technologies for Nanostructured and Multifunctional Materials, edited by T. Ohji, M. Singh, and S. Mathur (Ceramic Engineering and Science Proceedings, Hoboken, New Jersey), Vol. 35, no. 6, pp. 123–33.
  • V. V. Uchaikin, Fractional Derivatives for Physicists and Engineers: Volume I Background and Theory (Springer-Higher Education Press, Berlin-Beijing 2013).
  • S. Wang and G. O. Dayton, Dielectric properties of fine-grained barium titanate based X7R materials, J. Am. Ceram. Soc. 82 (10), 2677–82 (1999). doi:10.1111/j.1151-2916.1999.tb02141.x.
  • C. Pithan, D. Hennings, and R. Waser, Progress in the synthesis of nanocrystalline BaTiO3 powders for MLCC, Int J Appl Ceram Tec. 2 (1), 1–14 (2015). doi:10.1111/j.1744-7402.2005.02008.x.
  • P. Kumar et al., Influence of calcium substitution on structural and electrical properties of substituted barium titanate, Ceram Int. 37, 1697–700 (2011). doi:10.1016/j.ceramint.2011.01.022.
  • Z. C. Li and B. Bergman, Electrical properties and ageing characteristics of BaTiO3 ceramics doped by single dopants, J. E. Ceram. Soc. 25, 441–5 (2005). doi:10.1016/j.jeurceramsoc.2004.03.012.
  • V. V. Mitic et al., Influence of Yb2O3 and Er2O3 on BaTiO3 ceramics microstructure and corresponding electrical properties, Dev. Strategic Mater. 29 (10), 231–6 (2008).
  • V. Mitic et al., Dielectric properties of BaTiO3 doped with Er2O3, Yb2O3 based on intergranular contacts model, Adv. Electroceram. Mater. Ceram. Trans. 204, 137–44 (2009). doi:10.1002/9780470528990.ch16.
  • V. V. Mitic, V. Paunovic, and V. Pavlovic, Microstructure and dielectric properties of rare-earth doped BaTiO3 ceramics, Ferroelectrics 470 (1), 159–67 (2014). doi:10.1080/00150193.2014.923229.
  • V. V. Mitić et al., Kinetics of one-time relaxation electrical processes in BaTiO3 ceramics with constitutive relation – generalized Lorentz model, Cermodel 2017conference, July 28-28, Trento, Italy 2017.
  • V. V. Mitić et al., Meso-Kinetics of One Time Relaxation Electrical Processes in BaTiO3 Ceramics – Boltzmann-Poisson model (IMF, San Antonio, USA September 4–8, 2017).
  • B. R. Sontakke and A. S. Shaikh, Properties of caputo operator and its applications to linear fractional differential equations, B. R. Sontakke Int. J. Eng. Res. Appl. 5 (5), 22–27 (2015).
  • B. McGonegal, Fractional brownian motion and the fractional stochastic calculus. arXiv:1401.2752 [math.PR].
  • T. Sandev, R. Metzler, and Z. Tomovski, Correlation functions for the fractional generalized Langevin equation in the presence of internal and external noise, JMP 55, 023301 (2014). doi:10.1063/1.4863478.
  • M. D. Ortigueira and A. G. Batista, On the relation between the fractional Brownian motion and the fractional derivatives, Phys. Lett. A. 372, 958–68 (2008). doi:10.1016/j.physleta.2007.08.062.
  • V. V. Uchaikin, Fractional Derivatives for Physicists and Engineers, Volume II Applications (Springer-Higher Education Press, Berlin-Beijing 2013).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.