85
Views
3
CrossRef citations to date
0
Altmetric
Original Articles

Pyroelectric performance of [(1-x)Ba0.9Ca0.1TiO3-x(BaSn0.2Ti0.8O3)] lead free ceramics

, &
Pages 68-75 | Received 15 Jul 2017, Accepted 13 Jan 2018, Published online: 08 May 2018

References

  • G. H. Haertling, Ferroelectric Ceramics: History and Technology, J. Am. Ceram. Soc. 82 (4), 797–818 (1999).
  • W. Li, Z. J. Xu, R. Q. Chu, P. Fu, and G. Z. Zang, Enhanced ferroelectric properties in(Ba1−xCax)(Ti0.94Sn0.06)O3 lead-free ceramics, J. Eur. Ceram. Soc. 32 (2), 517–520 (2012).
  • P. Kumari, R. Rai, S. Sharma, M. Shandilya, and Ashutosh Tiwari, State-of-the-art of lead free ferroelectrics: A critical review, Adv. Mater. Lett. 6 (6), 453–484 (2015).
  • S. T. Lau, C. H. Cheng, S. H. Choy, D. M. Lin, K. W. Kwok, and H. L. W. Chan, Lead-free ceramics for pyroelectric applications, J. Appl. Phys. 103, 104105 (2008).
  • S. Bauer, and B. Ploss, A method for the measurement of the thermal, dielectric, and pyroelectric properties of thin pyroelectric films and their applications for integrated heat sensors, J. Appl. Phys. 68 (12), 6361–6367 (1990).
  • R. Whatmore, Pyroelectric devices and materials, Rep. Prog. Phys. 49 (12), 1335 (1986).
  • S. Patel, K. S. Srikanth, A. A. Baig Moghal, N. Ahamad Madhar, and R. Vaish, Effect of sintering parameters on the dynamic hysteresis scaling behavior of Ba0.85Sr0.15Zr0.1Ti0.9O3 ceramics, Integr. Ferroelectr. 176, 95–108 (2016).
  • S. Patel, A. Chauhan, J. Cuozzo, S. Lisenkov, I. Ponomareva, and R. Vaish, Pyro-paraelectric and flexocaloric effects in barium strontium titanate: A first principles approach, Appl. Phys. Lett. 108, 162901 (2016).
  • S. Patel, and R. Vaish, Effect of sintering temperature and dwell time dependent dynamic hysteresis scaling behavior of (Ba0.85Ca0.075Sr0.075)(Ti0.90Zr0.10)O3 ceramics, Ferroelectr. 505, 52–66 (2016).
  • B. Charlot, D. Coudouel, F. Very, and P. Combette, Droplet generation for thermal transient stimulation of pyroelectric PZT element, Sens. Actuators, A Phys. 225, 103–110 (2015).
  • Z. L. Wang, and W. Wu, Nanotechnology‐Enabled Energy Harvesting for Self‐Powered Micro‐/Nanosystems, Angew. Chem. Int. Ed. 51 (47), 11700–11721 (2012).
  • M. Vaish, M. Sharma, R. Vaish, and V. S. Chauhan, Electrical Energy Generation from Hot/Cold Air Using Pyroelectric Ceramics, Integr. Ferroelectr. 167 (1), 90–97 (2015).
  • N. A. Madhar, B. Ilahi, and M. Vaish, Pyroelectric Energy Harvesting Using (Ba0.85Ca0. 15)(Zr0.1Ti0.89Fe0.01) O3 Ceramics, Integr. Ferroelectr. 167 (1), 176–183 (2015).
  • M. Vaish, M. Sharma, R. Vaish, and V. S. Chauhan, Experimental Study on Waste Heat Energy Harvesting using Lead Zirconate Titanate (PZT-5H) Pyroelectric Ceramics, Energy Technol. 3, 768–773 (2015).
  • M. Vaish, M. Sharma, R. Vaish, and V. S. Chauhan, Harvesting thermal energy (via radiation) using pyroelectric materials (PZT-5H): An experimental study, Ferroelectr. Lett. Sect. 44 (1–3), 35–41 (2017).
  • S. B. Lang, Pyroelectricity: from ancient curiosity to modern imaging tool, Phys. Today. 58 (8), 31 (2005).
  • G. Zhang, S. Jiang, Y. Zeng, Y. Zhang, and Q. Zhang, High pyroelectric properties of porous Ba0. 67Sr0. 33TiO3 for uncooled infrared detectors, J. Am. Ceram. Soc. 92 (12), 3132–3134 (2009).
  • S. Patel, A. Chauhan, S. Kundu, N. Ahamad Madhar, B. Ilahi, R. Vaish, and K. B. R. Varma, Tuning of dielectric, pyroelectric and ferroelectric properties of 0.715Bi0.5Na0.5TiO3-0.065BaTiO3-0.22SrTiO3 ceramic by internal clamping, AIP Adv. 5 (8), 087145 (2015).
  • S. Patel, A. Chauhan, and R. Vaish, Large pyroelectric figure of merits for Sr-modified Ba0.85 Ca0.15 Zr0.1Ti0.9O3 ceramics, Solid State Sci. 52, 10–18. 14 (2016).
  • X. Lie, Y. L. Li, R. Yu, Z. Y. Cheng, X. Y. Wei, X. Yao, C. L. Jia, K. Urban, A. A. Bokov, Z. G. Ye, and J. Zhu, Static and dynamic polar nanoregions in relaxor ferroelectric Ba(Ti1−xSnx) O3 system at high temperature, Phys. Rev. B. 85 (1), 014118 (2012).
  • M. Sharma, R. Vaish, and V. S. Chauhan, Development of Figures of Merit for Pyroelectric Energy-Harvesting Devices, Energy Technology. 4, 1–9 (2016).
  • K. S. Srikanth, V. P. Singh, and R. Vaish, Enhanced pyroelectric figure of merits of porous BaSn0.05Ti0.95O3ceramics, J Eur Ceram Soc 1–8 (2017).
  • S. K. Upadhyay, V. R. Reddy, P. Bag, R. Rawat, S. M. Gupta, and A. Gupta, Electro-caloric effect in lead-free Sn doped BaTiO3 ceramics at room temperature and low applied fields, Appl. Phys. Lett. 105 (11), (2014).
  • X. Moya, E. S. Taulats, S. Crossley, D. G. Alonso, S. K. Narayan, A. Planes, L. Mañosa, and N. D. Mathur, Giant Electrocaloric Strength in Single‐Crystal BaTiO3, Adv. Mater. 25 (9), 1360–1365 (2013).
  • S. K. Narayan, and N. Mathur, Direct and indirect electrocaloric measurements using multilayer capacitors, J. Phys. D: Appl. Phys. 43 (3), 032002 (2010).
  • K. S. Srikanth, and R. Vaish, Enhanced electrocaloric, pyroelectric and energy storage performanceof BaCexTi1−xO3 ceramics, J Eur Ceram Soc. 1–7 (2017).
  • G. A. Smolensky, and V. A. Isupov, Zh. Tech. Fiz. 24, 1375–1378 (1954).
  • C. R. Bowen, J. Taylor, E. LeBoulbar, D. Zabek, A. Chauhan, and R. Vaish, Pyroelectric materials and devices for energy harvesting applications, Energ. Environ. Sci. 7 (12), 3836–3856 (2014).
  • M. Vaish, N. A. Madhar, B. Ilahi, V. S. Chauhan, and R. Vaish, An experimental study on thermal energy harvesting using Ca0.15(Sr0.5Ba0.5)0.85Nb2O5 pyroelectric ceramics, Ferroelectr. Lett. Sect. 43 (1–3), 52–58 (2016).
  • G. Vats, A. Chauhan, and R. Vaish, Thermal Energy Harvesting Using Bulk Lead-Free Ferroelectric Ceramics, Int. J. Appl. Ceram. Tec. 12 (S1), E49–E54 (2015).
  • V. Shah, R. Kumar, M. Talha, and R. Vaish, Piezoelectric materials for bi-stable energy harvester: A comparative study, Integr. Ferroelectr. 176 (1), 73–84 (2016).
  • M. Sharma, A. Chauhan, R. Vaish, and V. S. Chauhan, Pyroelectric materials for solar energy harvesting: a comparative study, Smart Mater. Struct. 24, 105013 (2015).
  • M. Sharma, R. Vaish, and V. S. Chauhan, A numerical investigation on exergy analyses of a pyroelectric tryglycine sulfate (TGS)-based solar energy harvesting system, Mater. Res. Express. 3, 025501 (2016).
  • K. S. Srikanth, S. Patel, S. Steiner, and R. Vaish, Engineered microstructure for tailoring the pyroelectric performance of Ba0.85Sr0.15Zr0.1Ti0.9O3 ceramics by 3BaO-3TiO2-B2O3 glass addition, Appl. Phys. Lett. 110, 232901 (2017).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.