54
Views
0
CrossRef citations to date
0
Altmetric
Section G: Theory, Modeling and Simulations

The PNR to relaxor transition in PSN with nearest neighbor Pb-O divacancies

, , , &
Pages 55-64 | Received 05 Sep 2017, Accepted 20 Feb 2018, Published online: 11 Mar 2019

References

  • G. A. Smolensky, and A. I. Agranovskaya. Dielectric polarization of a number of complex compounds. Sov. Phys. Sol. State. 1, 1429 (1959).
  • L. E. Cross. Relaxor ferroelectrics. Ferroelectrics. 76, 241 (1987).
  • F. Chu, I. M. Reaney, and N. Setter. Spontaneous (zero‐field) relaxor–to–ferroelectric‐phase transition in disordered Pb(Sc1/2 Nb1/2)O3. J. Appl. Phys. 77, 1671 (1995).
  • F. Chu, N. Setter, and A. K. Tagantsev. The spontaneous relaxor‐ferroelectric transition of Pb(Sc0.5 Ta0.5)O3. J. Appl. Phys. 74, 5129 (1993).
  • F. Chu, I. M. Reaney, and N. Setter. Role of defects in the ferroelectric relaxor lead scandium tantalate. J. Amer. Ceram. Soc. 78, 1947 (1995).
  • F. Chu, G. Fox, and N. Setter. Dielectric properties of complex perovskite lead scandium tantalate under dc bias. J. Amer. Ceram. Soc. 81, 1577 (2005).
  • L. Bellaiche, J. Íñiguez, E. Cockayne, and B. P. Burton. Effects of vacancies on the properties of disordered ferroelectrics: A first-principles study. Phys. Rev. B. 75, 014111 (2007).
  • E. Cockayne, and B. P. Burton. 144116. Phys. Rev. B. 69, (2004).
  • W. Kleemann, et al., Two-dimensional Ising model criticality in a three-dimensional uniaxial relaxor ferroelectric with frozen polar nanoregions. Phys. Rev. Lett. 97, 065702 (2006).
  • Kleeman, W. Random fields in relaxor ferroelectrics—a jubilee review. J. Adv. Dielectrics. 2, 1241001 (2012).
  • B. P. Burton, E. Cockayne, S. Tinte, and U. V. Waghmare. First-principles-based simulations of relaxor ferroelectrics. Phase Trans. 79, 91 (2006).
  • D. Sherrington, and S. Kirkpatrick. Solvable model of a spin-glass. Phys. Rev. Lett. 35, 1792 (1975).
  • D. Sherrington. BZT: A soft pseudospin glass. Phys. Rev. Lett. 111, 227601 (2013).
  • D. Sherrington. Pb(Mg1/3Nb2/3)O3: A minimal induced-moment soft pseudospin glass perspective. Phys. Rev. B. 89, 064105 (2014).
  • D. Sherrington. A spin glass perspective on ferroic glasses. Phys. Status Solidi B. 251, 1967 (2014).
  • D. Sherrington. Relaxors, spin, Stoner and cluster glasses. Phase Transitions. 88, 202 (2015).
  • S. F. Edwards, and P. W. Anderson. Theory of spin glasses. J. Phys. F: Met. Phys. 5, 965 (1975).
  • The phrase “quenched chemical disorder” implies that the chemical configuration is fixed within the temperature range that polar order-disorder is analyzed.
  • B. P. Burton, E. Cockayne, S. Tinte, and U. V. Waghmare. Effect of nearest neighbor Pb-O divacancy pairs on the ferroelectric-relaxor transition in Pb(Sc1/2Nb1/2)O3. Phys. Rev. B. 77, 144114 (2008).
  • B. P. Burton, E. Cockayne, and U. V. Waghmare. Correlations between nanoscale chemical and polar order in relaxor ferroelectrics and the lengthscale for polar nanoregions. Phys. Rev. B. 72, 064113 (2005).
  • B. Dkhil, et al., Intermediate temperature scale T∗ in lead-based relaxor systems. Phys. Rev. B. 80, 064103 (2009).
  • S. Tinte, B. P. Burton, E. Cockayne, and U. V. Waghmare. Origin of the relaxor state in Pb(BxB′{1–x})O3 perovskites. Phys. Rev. Lett. 97, 137601 (2006).
  • W. Zhong, et al., Phase transitions in BaTiO3 from first principles. Phys. Rev. B. 55, 6161 (1997).
  • U. V. Waghmare, E. Cockayne, and B. P. Burton. Ferroelectric phase transitions in nano-scale chemically ordered PbSc0.5 Nb0.5 O3 using a first-principles model hamiltonian. Ferroelectrics. 291, 187 (2003).
  • B. P. Burton, U. V. Waghmare, and E. Cockayne. Correlations between nano-scale chemical- and polar-order in relaxor ferroelectrics and the length scale for polar nano-regions. TMS Letters 1, 29 (2004).
  • G. Burns, and F. H. Dacol. Glassy polarization behavior in ferroelectric compounds and. Solid State Commun 48, 853 (1983).
  • T. Castellani, and A. Cavagna. J. Stat. Mecha. P05012 (2005). PII: S1742-5468(05)99356-4
  • M. E. Fisher. Renormalization group theory: its basis and formulation in statistical physics. Rev. Mod. Phys. 70, 653 (1998).
  • D. Sherrington. Private communication.
  • Z. Kutnjak, J. Petzelt, and R. Blinc. The giant electromechanical response in ferroelectric relaxors as a critical phenomenon. Nature. 441, 956 (2006).
  • H. Maletta, and P. Convert. Onset of Ferromagnetism in EuxSr1 − xS near x = 0.5. Phys. Rev. Lett. 42, 108 (1979).
  • R. B. Coles, B. Sarkissian, and R. H. Taylor. The role of finite magnetic clusters in Au-Fe alloys near the percolation concentration. Phil. Mag. 37, 489 (1978).
  • The strongest suggestion of such a transition is in the NO configuration where qΔt(T) exhibits a low-T reduction to a plateau, which does not seem to define a consistent phase-boundary or crossover.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.