232
Views
2
CrossRef citations to date
0
Altmetric
Section G: Theory, Modeling and Simulations

Electronic, mechanical, and optical properties of Ruddlesden-Popper perovskite sulfides: First principle calculation

, , , &
Pages 142-151 | Received 05 Sep 2017, Accepted 20 Feb 2018, Published online: 11 Mar 2019

References

  • S. N. Ruddlesden, and P. Poper, New compounds of the K2NIF4 type, Acta Crystallogr. 10 (8), 538 (1957).
  • V. Thangadurai, and J. Gopalakrishnan, Proton conduction in layered perovskite oxides, Solid State Ionics 73 (1–2), 163 (1994).
  • K. Ramesha et al., ALaMnBO6 (A 5 Ca, Sr, Ba; B 5 Fe, Ru) double perovskites, Mater. Res. Bull. 35 (4), 559 (2000).
  • T. Shimura, K. Suzuki, and H. Iwahara, Protonic and oxide–ionic conduction in Srm+1(Ti1−xInx)mO3m+1−α (m = 1, 2 and ∞) at high temperature, Solid State Ionics 113–115 (1–2), 355 (1998).
  • B. H. Chen, B. Eichhorn, and W. Wong-Ng, Structural reinvestigation of Ba3Zr2S7 by single-crystal x-ray diffraction, Acta Crystallogr. Sect. C Cryst. Struct. Commun. 50 (2), 161 (1994).
  • T. Choi et al., Switchable ferroelectric diode and photovoltaic effect in BiFeO3, Science 324 (5923), 63 (2009).
  • I. Grinberg et al., Perovskite oxides for visible-light-absorbing ferroelectric and photovoltaic materials, Nature 503 (7477), 509 (2013).
  • T. Wolfram, and Ş. Ellialtioglu, Elektronik and Optical Properties of d-Band Perovskites (Cambridge University Press, New York, 2006), p. 315.
  • J. M. Bennett, I. Grinberg, and A. M. Rappe, New highly polar semiconductor ferroelectrics through d8 cation-O vacancy substitution into PbTiO3: a theoretical study, J. Am. Chem. Soc. 130 (51), 17409 (2008).
  • G. Y. Gou et al., Post density functional theoretical studies of highly polar semiconductive Pb (Ti1-xNix)O3-x solid solutions: effects of cation arrangement on band gap, Phys. Rev. B 83 (20), 205115 (2011).
  • R. F. Berger, and J. B. Neaton, Computational design of low-band-gap double perovskites, Phys. Rev. B 86 (16), 165211 (2012).
  • R. Nechache et al., Band gap tuning of multiferroic oxide solar cells, Nat. Photonics 9 (1), 61 (2015).
  • H. Wang, G. Gou, and J. Li, Ruddlesden-Popper perovskite sulfides A3B2S7: a new family of ferroelectric photovoltaic materials for the visible spectrum, Nano Energy 22, 507 (2016).
  • G. Kresse, and J. Hafner, Ab initio molecular dynamics for liquid metals, Phys. Rev. B 47 (1), 558 (1993).
  • G. Kresse, and J. Furthmüller, Ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set, Comput. Mater. Sci. 6 (1), 15 (1996).
  • G. Kresse, and D. Joubert, From ultrasoft pseudopotentials to the projector augmented-wave method, Phys. Rev. B 59 (3), 1758 (1999).
  • G. Kresse, and J. Furthmüller, Efficient iterative schemes for ab initio total- energy calculations using a plane-wave basis set, Phys. Rev. B 54 (16), 11169 (1996).
  • P. Hohenberg, and W. Kohn, Inhomogeneous electron gas, Phys. Rev. 136 (3B), B864 (1964).
  • J. P. Perdew, S. Burke, and M. Ernzerhof, Generalized gradient approximation made simple, Phys. Rev. Lett. 77 (18), 3865 (1996).
  • H. J. Monkhorst, and J. D. Pack, Special points for Brillouin-zone integrations, Phys. Rev. B 13 (12), 5188 (1976).
  • M. Saeki, Y. Yajima, and M. Onoda, Preparation and crystal structures of new barium zirconium sulfides, Ba2ZrS4 and Ba3Zr2S7, J. Solid State Chem. 92 (2), 286 (1991).
  • Y. Le Page, and P. Saxe, Symmetry-general least-squares extraction of elastic coefficients from ab initio total energy calculations, Phys. Rev. B 63 (17), 174103 (2001).
  • J. P. Watt, Hashin-Shtrikman bounds on the effective elastic moduli of polycrystals with orthorhombic symmetry, J. Appl. Phys. 50 (10), 6290 (1979).
  • Z. Wu et al., Crystal structures and elastic properties of superhard IrN2 and IrN3 from first principles, Phys. Rev. B 76(5), 054115 (2007).
  • W. Voight, Lehrbook der Kristallphysik (Teubner, Leipsig, Germany, 1928), p. 962.
  • A. Reuss, Berechnung der flieszgrenze von mischkristallen auf grund der plastizitatsbedingung für einkristalle, Z. Angew. Math. Mech. 9 (1), 49 (1929).
  • R. Hill, The elastic behavior of crystalline aggregate, Proc. Phys. Soc. A 65 (5), 349 (1952).
  • V. V. Bannikov, I. R. Shein, and A. L. Ivanovskii, Electronic structure, chemical bonding and elastic properties of the first thorium-containing nitride perovskite TaThN3, Phys. Status Solidi RRL 1 (3), 89 (2007).
  • H. Koc et al., Ab initio calculation of the structural, elastik, electronic, and linear optical properties of ZrPtSi and TiPtSi ternary compounds, Comput. Mater. Sci. 62, 235 (2012).
  • H. Koc et al., First principles prediction of the elastic, electronic, and optical properties of Sb2S3 and Sb2Se3 compounds, Solid State Sci. 14 (8), 1211 (2012).
  • I. R. Shein, and A. L. Ivanovskii, Elastic properties of mono- and polycrystalline hexagonal AlB2-like diborides of s, p and d metals from first-principles calculations, J. Phys. Condens. Matter 20 (41), 415218 (2008).
  • S. F. Pugh, Relations between the elastic moduli and the plastic properties of polycrystalline pure metals, Philos. Mag. 45 (367), 823 (1954).
  • H. Fu et al., Ab initio calculations of elastic constants and thermodynamic properties of NiAl under high pressures, Comput. Mater. Sci. 44 (2), 774 (2008).
  • V. Tvergaard, and J. W. Hutchinson, Microcracking in ceramics induced by thermal expansion or elastic anisotropy, J. Am. Ceram. Soc. 71 (3), 157 (1988).
  • S. I. Ranganathan, and M. Ostoja-Starzewski, Universal elastic anisotropy index, Phys. Rev. Lett. 101 (5), 055504 (2008).
  • S. Zhou, J. Long, and W. Huang, Theoretical prediction of the fundamental properties of ternary bismuth tellurohalides. Mater. Sci. Semicond. Process. 27, 605 (2014).
  • I. Johnston et al., Solids State Physics Simulations, the Consortium for Upper Level Physics Software (Wiley, New York, NY, 1996).
  • O. L. Anderson, A simplified method for calculating the Debye temperature from elastic constants, J. Phys. Chem. Solids 24 (7), 909 (1963).
  • E. Schreiber, O. L. Anderson, and N. Soga, Elastic Constants and Their Measurements (McGraw-Hill, New York, NY, 1973).
  • H. R. Philipp, and H. Ehrenreich, Optical properties of semiconductors, Phys. Rev. 129 (4), 1550 (1963).
  • H. Koc et al., Mechanical, electronic, and optical properties of Bi2S3 and Bi2Se3 compounds: first principle investigations, J. Mol. Model. 20 (4), 1 (2014).
  • L. Marton, Experiments on low-energy electron scattering and energy losses, Rev. Mod. Phys. 28 (3), 172 (1956).
  • O. V. Kovalev, Representations of the Crystallographic Space Groups. Irreducible Representations Induced Representations and Corepresentations (Gordon and Breach, Amsterdam, The Netherlands, 1965).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.