131
Views
3
CrossRef citations to date
0
Altmetric
Articles

The doping effects of ZnNb2O6 on the phase, microstructure and energy storage properties of (Sr0.98Ca0.02)TiO3 paraelectric ceramics

, , , , , , , & show all
Pages 122-130 | Received 18 Jan 2018, Accepted 18 Apr 2018, Published online: 20 Nov 2018

References

  • Z. Liu, et al., Temperature-dependent stability of energy storage properties of Pb0.97La0.02(Zr0.58Sn0.335Ti0.085)O3 antiferroelectric ceramics for pulse power capacitors. Appl. Phys. Lett. 106(26), 262901 (2015).
  • Y. Tian, et al., Phase transitions in bismuth-modified silver niobate ceramics for high power energy storage. J. Mater. Chem. A 5(33), 17525 (2017).
  • Y. Tian, et al., High energy density in silver niobate ceramics. J. Mater. Chem. A 4(44), 17279 (2016).
  • X. Liu, et al., Energy storage properties of BiTi0.5Zn0.5O3-Bi0.5Na0.5TiO3-BaTiO3 relaxor ferroelectrics. Ceram. Int. 42, 17876 (2016).
  • T. Wang, et al., Relaxor ferroelectric BaTiO3–Bi(Mg2/3Nb1/3)O3 ceramics for energy storage application. J. Am. Ceram. Soc. 98(2), 559 (2015).
  • Q. Xu, et al., Energy-storage properties of Bi0.5Na0.5TiO3-BaTiO3-KNbO3 ceramics fabricated by wet-chemical method. J. Eur. Ceram. Soc. 37(1), 99 (2017).
  • V. S. Puli, et al., Effect of lead borosilicate glass addition on the crystallization, ferroelectric and dielectric energy storage properties of Ba0.9995La0.0005TiO3 ceramics. J. Alloys Compd. 688, 721 (2016).
  • Q. Hu, et al., Dielectric and temperature stable energy storage properties of 0.88BaTiO3-0.12Bi(Mg1/2Ti1/2)O3 bulk ceramics. J. Alloys Compd. 640, 416 (2015).
  • M. S. Mirshekarloo, K. Yao, and T. Sritharan, Large strain and high energy storage density in orthorhombic perovskite (Pb0.97La0.02)(Zr1-x-ySnxTiy)O3 antiferroelectric thin films. Appl. Phys. Lett. 97(14), 142902 (2010).
  • D. G. Zheng, and R. Z. Zuo, Enhanced energy storage properties in La(Mg1/2Ti1/2)O3-modified BiFeO3-BaTiO3 lead-free relaxor ferroelectric ceramics within a wide temperature range. J. Eur. Ceram. Soc 37(1), 413 (2017).
  • F. Gao, et al., Energy-storage properties of 0.89Bi0.5Na0.5TiO3 –0.06BaTiO3 –0.05K0.5Na0.5NbO3 Lead-Free Anti-ferroelectric ceramics. J. Am. Ceram. Soc. 94(12), 4382 (2011).
  • L. Jin, et al., Diffuse phase transitions and giant electrostrictive coefficients in lead-free Fe3+-doped 0.5Ba(Zr0.2Ti0.8)O3-0.5(Ba0.7Ca0.3)TiO3 ferroelectric ceramics. ACS Appl. Mater. Interfaces 8(45), 31109 (2016).
  • L. Jin, F. Li, and S. Zhang, Decoding the fingerprint of ferroelectric loops: Comprehension of the material properties and structures. J. Am. Ceram. Soc. 97(1), 1 (2014).
  • D. Damjanovic, N. Klein, L. Jin, and V. Porokhonskyy, What can be expected from lead-free piezoelectric materials? Funct. Mater. Lett. 03(01), 5 (2010).
  • R. Ma, et al., A novel double-coating approach to prepare fine-grained BaTiO3-La2O3-SiO2 dielectric ceramics for energy storage application. J. Alloys Compd. 690, 438 (2017).
  • X. F. Chen, et al., Doped Pb(Zr, Sn, Ti)O3 slim-loop ferroelectric ceramics for high-power pulse capacitors application. Ferroelectrics 363(1), 56 (2008).
  • T. Wang, et al., Energy storage properties in Ba0.4Sr0.6TiO3 ceramics with addition of semi-conductive BaO–B2O3–SiO2–Na2CO3–K2CO3 glass. J. Alloys Compd. 617, 399 (2014).
  • Z. Y. Shen, et al., Electrical hetero-structure of Nd0.1Sr0.9TiO3 ceramic for energy storage applications. J. Mater. Sci: Mater. Electron. 24(2), 607 (2013).
  • G. Li, et al., Dielectric properties and relaxation behaviors of Ba2+ doped Sr0.97Sm0.02TiO3 ceramics in different sintering atmospheres. Ceram. Int. 42(15), 16782 (2016).
  • X. R. Wang, et al., Glass additive in barium titanate ceramics and its influence on electrical breakdown strength in relation with energy storage properties. J. Eur. Ceram. Soc. 32(3), 559 (2012).
  • L. H. Luo, B. Y. Wang, X. J. Jiang, and W. P. Li, Energy storage properties of (1-x)(Bi0.5Na0.5)TiO3-xKNbO3 lead-free ceramics. J. Mater. Sci. 49(4), 1659 (2014).
  • G. F. Zhang, et al., Effects of Ca doping on the energy storage properties of (Sr, Ca)TiO3 paraelectric ceramics. J. Mater. Sci. Mater. Electron. 26(5), 2726 (2015).
  • Y. Yan, et al., The dielectric properties and microstructure of BaTiO3 ceramics with ZnO-Nb2O5 composite addition. J. Alloys Compd. 646, 748 (2015).
  • S. Zhao, X. J. Yue, and X. Liu, Tuning room temperature Tp and MR of La1-y(Cay-xSrx)MnO3 polycrystalline ceramics by Sr doping. Ceram. Int. 43(5), 4594 (2017).
  • Y. Yang, et al., Electrical properties and microstructures of (Zn and Nb) co-doped BaTiO3 ceramics prepared by microwave sintering. Ceram. Int. 42(6), 7877 (2016).
  • U. Bianchi, W. Kleemann, and J. G. Bednorz, Raman scattering of ferroelectric Sr1-xCaxTiO3, x = 0.007. J. Phys. Condens. Matter. 6(6), 1229 (1994).
  • W. Kleemann, et al., Domain state properties of weakly doped SrTiO3:Ca. Phase Transit. 55(1–4), 57 (1995).
  • C. Rodenbücher, et al., Fast mapping of inhomogeneities in the popular metallic perovskite Nb:SrTiO3 by confocal Raman microscopy. Phys. Status Solidi Rapid Res. Lett. 08(09), 781 (2014).
  • Y. S. Oh, et al., Experimental demonstration of hybrid improper ferroelectricity and the presence of abundant chargedwalls in (Ca,Sr)3Ti2O7 crystals. Nat. Mater. 14(4), 407 (2015).
  • J. Zheng, et al., Dielectric properties and energy storage behaviors in ZnNb2O6-doped Sr0.97Nd0.02TiO3 ceramics. J. Mater. Sci. Mater. Electron. 27(4), 3759 (2016).
  • S. Jayanthi, and T. R. N. Kutty, Dielectric properties of 3d transition metal substituted BaTiO3 ceramics containing the hexagonal phase formation. J. Mater. Sci. Mater. Electron. 19(7), 615 (2008).
  • S. Y. Chu, T. Y. Chen, I. T. Tsai, and W. Water, Doping effects of Nb additives on the piezoelectric and dielectric properties of PZT ceramics and its application on SAW device. Sens. Actuators, A Phys. 113(2), 198 (2004).
  • Z. L. Yu, et al., Enhanced energy storage properties of BiAlO3 modified Bi0.5Na0.5TiO3– Bi0.5K0.5TiO3 lead-free antiferroelectric ceramics. Ceram. Int. 43, 7653 (2017).
  • Y. Wang, et al., Enhanced energy storage density of Ba0.4Sr0.6TiO3 ceramics with additive of Bi2O3 - B2O3 - ZnO glass. Mater. Lett. 201, 203 (2017).
  • Z. Song, et al., The effect of grain boundary on the energy storage properties of (Ba0.4Sr0.6M)TiO3 paraelectric ceramics by varying grain sizes. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 62(4), 609 (2015).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.