187
Views
3
CrossRef citations to date
0
Altmetric
Articles

A generalized thermodynamic frame of magneto-electric-caloric coupling effects of single phase epitaxial multiferroic thin films

, , , , &
Pages 186-195 | Received 27 Dec 2017, Accepted 08 May 2018, Published online: 20 Nov 2018

References

  • V. K. Pecharsky, and K. A. Gschneidner, Giant magnetocaloric effect in Gd5(Si2Ge2), Phys. Rev. Lett. 78(23), 4494 (1997).
  • J. F. Scott, Electrocaloric materials, Annu. Rev. Mater. Res. 41(1), 229 (2011).
  • M. Valant, Electrocaloric materials for future solid-state refrigeration technologies, Prog. Mater. Sci. 57(6), 980 (2012).
  • X. Moya, S. Kar-Narayan, and N. D. Mathur, Caloric materials near ferroic phase transitions, Nature Mater. 13(5), 439 (2014).
  • A. Mischenko et al., Giant electrocaloric effect in thin-film PbZr(0.95)Ti(0.05)O3, Science 311(5765), 1270 (2006).
  • B. Neese et al., Large electrocaloric effect in ferroelectric polymers near room temperature, Science 321(5890), 821 (2008).
  • M. M. Vopson, The multicaloric effect in multiferroic materials, Solid State Commun. 152(23), 2067 (2012).
  • M. M. Vopson, Theory of giant-caloric effects in multiferroic materials, J. Phys. D: Appl. Phys. 46(34), 345304 (2013).
  • M. M. Vopson, The induced magnetic and electric fields’ paradox leading to multicaloric effects in multiferroics, Solid State Commun. 231–232, 14 (2016).
  • H. Meng, L. Bing, R. Weijun, and Z. Zhidong, Coupled caloric effects in multiferroics, Phys. Lett. A 377(7), 567 (2013).
  • A. Planes, T. Castan, and A. Saxena, Thermodynamics of multicaloric effects in multiferroics, Philos. Mag. 94(17), 1893 (2014).
  • I. N. Flerov, E. A. Mikhaleva, M. V. Gorev, and A. V. Kartashev, Caloric and multicaloric effects in oxygen ferroics and multiferroics, Phys. Solid State 57(3), 429 (2015).
  • A. Kumar, and K. L. Yadav, Study on multicaloric effect of CuO induced multiferroic, J. Appl. Phys. 116(8), 083907 (2014).
  • Y. Liu et al., Large reversible caloric effect in FeRh thin films via a dual-stimulus multicaloric cycle, Nat. Commun. 7, 11614 (2016).
  • H. Ursic et al., A multicaloric material as a link between electrocaloric and magnetocaloric refrigeration, Sci. Rep. 6, 26629 (2016).
  • Y. Liu et al., Towards multicaloric effect with ferroelectrics, Phys. Rev. B 94(21), 214113 (2016).
  • A. Chauhan, S. Patel, and R. Vaish, Enhanced energy harvesting in commercial ferroelectric materials, Mater. Res. Express 1(2), 025504 (2014).
  • M. M. Shirolkar et al., Tunable multiferroic and bistable/complementary resistive switching properties of dilutely Li-doped BiFeO3 nanoparticles: an effect of aliovalent substitution, Nanoscale 6(9), 4735 (2014).
  • J. K. Murthy, and A. Venimadhav, Multicaloric effect in multiferroic Y2CoMnO6, J. Phys. D: Appl. Phys. 47(44), 445002 (2014).
  • I. A. Starkov, and A. S. Starkov, A generalized thermodynamic theory of the multicaloric effect in single-phase solids, Int. J. Solids Struct. 100–101, 187 (2016).
  • X. Moya et. al., Giant and reversible extrinsic magnetocaloric effects in La 0.7 Ca 0.3 MnO 3 films due to strain, Nature Mater. 12(1), 52 (2013).
  • S. Lisenkov et al., Multicaloric effect in ferroelectric PbTiO3 from first principles, Phys. Rev. B 87(22), 224101 (2013).
  • S. Anand, and U. V. Waghmare, Anomalies and synergy in the caloric effects of magnetoelectrics. Mater. Res. Express 1(4), 045503 (2014).
  • J. H. Haeni et al., Room-temperature ferroelectricity in strained SrTiO3. Nature 430(7001), 758 (2004).
  • K. J. Choi et al., Enhancement of ferroelectricity in strained BaTiO3 thin films, Science 306(5698), 1005 (2004).,
  • D. G. Schlom et al., Strain tuning of ferroelectric thin films, Annu. Rev. Mater. Res. 37, 589 (2007).
  • M. P. Warusawithana et al., A ferroelectric oxide made directly on silicon, Science 324(5925), 367 (2009).,
  • J. H. Lee et al., A strong ferroelectric ferromagnet created by means of spin–lattice coupling, Nature 466(7309), 954 (2010).
  • N. A. Pertsev, A. G. Zembilgotov, and A. K. Tagantsev, Effect of mechanical boundary conditions on phase diagrams of epitaxial ferroelectric thin films, Phys. Rev. Lett. 80(9), 1988 (1998).
  • G. Bai, Q. Y. Xie, Z. G. Liu, and D. M. Wu, Effect of the out-of-plane stress on the properties of epitaxial SrTiO3 films with nano-pillar array on Si-substrate, J. Appl. Phys. 118(7), 074101 (2015).
  • R. S. Beach et al., Enhanced Curie temperatures and magnetoelastic domains in Dy/Lu superlattices and films, Phys. Rev. Lett. 70(22), 3502 (1993).
  • Q. Gan et al., Direct measurement of strain effects on magnetic and electrical properties of epitaxial SrRuO3 thin films, Appl. Phys. Lett. 72(8), 978 (1998).
  • D. Fuchs et al., Tuning the magnetic properties of LaCoO3 thin films by epitaxial strain, Phys. Rev. B 77(1), 014434 (2008).
  • H. P. Wu et al., Effect of out-of-plane misfit strain on phase diagrams and ferroelectric properties of ferroelectric films in vertical nanocomposite structures, Appl. Phys. A 113(1), 155 (2013).
  • H. P. Wu et al., Adjustable magnetoelectric effect of self-assembled vertical multiferroic nanocomposite films by the in-plane misfit strain and ferromagnetic volume fraction, J. Appl. Phys. 115(11), 114105 (2014).
  • I. C. Infante et al., Bridging multiferroic phase transitions by epitaxial strain in BiFeO3, Phys. Rev. Lett. 105(5), 057601 (2010).
  • S. Prosandeev, I. A. Kornev, and L. Bellaiche, Phase transitions in epitaxial (-110) BiFeO3 films from first principles, Phys. Rev. Lett. 107(11), 117602 (2011).
  • C. Daumont et al., Strain dependence of polarization and piezoelectric response in epitaxial BiFeO3 thin films, J. Phys. Condens. Matter 24(16), 162202 (2012).
  • W. Chen et al., Origin of thickness dependent dc electrical breakdown in dielectrics, Appl. Phys. Lett. 100(22), 222904 (2012).
  • Y. Yang et al., Revisiting properties of ferroelectric and multiferroic thin films under tensile strain from first principles, Phys. Rev. Lett. 109(5), 057602 (2012).
  • M. D. Glinchuk, E. A. Eliseev, A. N. Morozovska, and R. Blinc, Giant magnetoelectric effect induced by intrinsic surface stress in ferroic nanorods, Phys. Rev. B 77(2), 024106 (2008).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.