591
Views
18
CrossRef citations to date
0
Altmetric
Articles

Vibronic (pseudo Jahn-Teller) theory of ferroelectricity: Novel aspects and applications

Pages 1-59 | Received 26 Apr 2018, Accepted 09 Jul 2018, Published online: 19 Mar 2019

References

  • F. Devonshire, Theory of ferroelectrics, Adv. Phys. 3 (10), 85 (1954).
  • V. L. Ginzburg, Zh. Eksp. Teor. Fiz. [Sov. Phys. JETP] 15, 739 (1945). 739; Fiz. Tverd. Tela [Sov. Phys. Solid State] 2, 2031 (1960).
  • W. Cochran, Phys. Rev. Lett. 3, 412 (1959). Adv. Phys. 10, 40 (1961).
  • P. W. Anderson, In Fizika Dielectrikov, AN SSSR: Moscow, 1959, p. 290.
  • L. Landau, and E. M. Lifshitz, Statistical Physics. Part I, 3rd ed., Butterworth- Heinemann, Oxford, UK, 1994, p. 446.
  • M. E. Lines, and A. M. Glass, Principles and Applications of Ferroelectric and Related Materials, Clarendon, Oxford, 1977.
  • G. A. Smolenskii et al., Ferroelectrics and Antiferroelectrics, Nauka, Leningrad, 1971.
  • P. Ghosez, Microscopic Properties of Ferroelectric Oxides from First-Principles: Selected Topics. Part 1, Troisieme Cycle de la Physique en Suisse Romande, Lausanne, 2002.
  • R. Blinc, Advanced Ferroelectricity, International Series of Monographs on Physics, Vol. 151, Oxford University Press, Oxford, 2011.
  • H. D. Megaw, G. Solids. Crystal structure of barium titanium oxide and other double oxides of the perovskite type, Trans. Faraday Soc. 42, A224 (1946). ibid, A244.
  • W. P. Mason, and B. T. Mattias, Phys. Rev. 74, 1662 (1948).
  • S. Tinte, et al., Phys. Rev. B. 67, 064106 (2003).
  • N. Marzari, and D. Vanderbilt, AIP Conf. Proc. 436, 146 (1998).
  • J. F. Scott, and C. A. P. Dearaujo, Ferroelectric memories, Science. 246 (4936), 1400 (1989).
  • J. Junquera, and P. Ghosez, Critical thickness for ferroelectricity in perovskite ultrathin films, Nature. 422 (6931), 506 (2003).
  • P. Ghozez, X. Gonze, and J. P. Michenaud, Ferroelectrics. 153, 91 (1994). 164, 113 (1995); Europhys. Lett. 194, 33 (1996).
  • N. A. Hill, J. Phys. Chem. 104, 6694 (2000). N. A. Spaldin, and M. Fiebig, Science. 309, 391 (2005). S. W. Cheong, and M. Mostovoy, Nature Mater. 6, 13 (2007). R. Ramesh, and N. Spaldin, Nature Matter. 6, 21 (2007). S. Picozzi, and C. Ederer, J. Phys. Condens. Matter. 21, 303201 (2009). J. T. Heron et al., Phys. Rev. Lett. 107, 217202 (2011). P. Barone, and S. Picozzi, C. R. Physique. 16, 143 (2015). A. Stroppa, and S. Picozzi, Eur. Phys. J. B. 85, 240 (2012). J. M. Rondinelli, Aaron, S. Eidelson, Nicola et al., Phys. Rev. B. 79, 205119 (2009). P. Barone, S. Kanungo, S. Picozzi, and T. Saha- Dasgupta, Phys. Rev. B. 84, 134101 (2011). H. Sakai et al., Phys. Rev. Lett. 107, 137601 (2011).
  • K. F. Wang, J. M. Liu, and Z. F. Ren, Adv. Phys. 58, 321 (2009). M. Bibes, J. E. Villegas, and A. Barthelemy, Ultrathin oxide films and interfaces for electronics and spintronics. Adv. Phys. 60 (1), 5 (2011).
  • R. King-Smith, and D. Vanderbilt, Ferroelectrics. 136, 85 (1992). Phys. Rev. B. 49, 5828 (1994). W. Zhong, and D. Vanderbilt, Phys. Rev. Lett. 74, 2587 (1995).
  • R. E. Cohen, and H. Krakauer, Phys. Rev. B. 42, 6416 (1990). R. E. Cohen, Nature. 358, 136 (1992).
  • W. Zhong, D. Vanderbilt, and K. M. Rabe, First-principles theory of ferroelectric phase transitions for perovskites: The case of BaTiO3, Phys. Rev., B Condens. Matter. 52 (9), 6301 (1995). I).
  • P. Ghosez, et al., Lattice dynamics of BaTiO3, PbTiO3, and PbZrO3: A comparative first-principles study, Phys. Rev. B. 60 (2), 836 (1999).
  • G. Geneste, Phys. Rev. B. 79, 144104 (2009).
  • S. Y. Yan, et al., Electronic structures and ferroelectric instabilities of cubic AV O3 (A = Sr, Ba, and Pb) perovskites by first-principles calculations, J. Phys: Condens. Matter . 22 (12), 125501 (2010).
  • A. Roy, and D. Vanderbilt, Phys. Rev. B. 83, 134116 (2011).
  • M. A. Oak et al., 4d-5p orbital mixing and asymmetric In 4d-O 2p hybridization in InMnO3: a new bonding mechanism for hexagonal ferroelectricity, Phys. Rev. Lett. 106 (4), 047601 (2011).,
  • Levin, et al., Phys. Rev. B. 83, 094122 (2011).
  • S. Sanna et al., Phys. Rev. B. 83, 054112 (2011).
  • N. N. Kristoffel, and P. I. Konsin, In:, 11 (1973). Titanat Baria, Nauka, Moscow, 6, 3 (1973). P. Konsin, and N. Kristoffel, Electron – phonon theory of ferroelectricity and the isotope effect in perovskite oxides, Ferroelectrics. 226 (1), 95 (1999).
  • Ya, G. Girshberg, and Y. Yacoby, Solid State Commun. 103, 425 (1997). J. Phys. Condens. Matter. 11, 9807 (1999). Ya, G. Girshberg, J. Phys. Condens. Matter. 13, 8817 (2001).
  • N. M. Plakida, and G. L. Mailyan, Fiz. Tverd. Tela. 19, 121 (1977). G. L. Mailyan, and N. M. Plakida, Fluctuations of order parameter and anharmonic interaction in the vibronic model of ferroelectrics, Phys. Stat. Sol. (b). 80 (2), 543 (1977).
  • M. Posternak, R. Resta, and A. Baldereschi, Role of covalent bonding in the polarization of perovskite oxides: The case of KNbO3, Phys. Rev. B. 50 (12), 8911 (1994).
  • A. F. Devonshire, Proc. R. Soc. London, Sect. A. 153, 601 (1936). 1936).
  • R. Comes, M. Lambert, and A. Guinner, Solid State Commun. 6, 715 (1968). 12, 1053 (1973); R. Comes et al., Ferroelectrics. 12, 3 (1976).
  • A letter states: “University of Paris…Orsay, January 23 [1969], …Dear Dr Bersuker, We just discovered your note “On the Origin of Ferroelectricity in Perovskite type Crystals” published in Physics Letters (1. April 1966). From a completely different approach we came to conclusions, which are similar to yours. You will find enclosed our publications on BaTiO3 and KNbO3… Sincerely Yours, R. Comes.”
  • G. Burns, and F. Dacol, Ferroelectrics. 37, 661 (1981). Solid State Commun. 42, 9 (1982).
  • F. Gervais, Displacive - order-disorder crossover IFI ferroelectrics. Ferroelectrics. 53 (1), 91 (1984).
  • H. Ehses, H. Bock, and K. Fischer, The temperature dependence of the debye-waller-factor in barium titanate, Ferroelectrics. 37 (1), 507 (1981).
  • K. Itoh, et al., Crystal structure of BaTiO3 in the cubic phase, Ferroelectrics. 63 (1), 29 (1985).
  • K. A. Müller, and W. Berlinger, Phys. Rev. B. 34, 6130 (1986). K. A. Müller, W. Berlinger, K. W. Blazey, and J. Albers, Electron paramagnetic resonance of Mn4+ in BaTiO3, Solid State Commun. 61 (1), 21 (1987).
  • G. Volkel, and K. A. Müller, Phys. Rev. B. 76, 094105 (2007).
  • O. Hanske-Petitpierre et al., Phys. Rev. B. 44, 6700 (1992); N. Sicron et al., Nature of the ferroelectric phase transition in PbTiO3, Phys. Rev. B. 50 (18), 13168 (1994).
  • B. Ravel, et al., Local structure and the phase transitions of BaTiO3, Ferroelectrics. 206 (1), 407 (1998).
  • E. Stern, Character of order-disorder and displacive components in barium titanate, Phys. Rev. Lett. 93 (3), 037601 (2004).
  • T. P. Dougherty et al., Femtosecond resolution of soft mode dynamics in structural phase transitions, Science. 258 (5083), 770 (1992).
  • B. Zalar, V. V. Laguta, and R. Blinc, Phys. Rev. Lett. 90, 037601 (2003). B. Zalar, et al., Phys. Rev. B. 71, 064107 (2005).
  • R. Blinc, et al., Order-disorder component in the phase transition mechanism of 18O enriched strontium titanate, Phys. Rev. Lett. 94 (14), 147601 (2005).
  • I. K. Jeong et al., Phys. Rev. B. 84, 064125 (2011).
  • A. Bussman-Holder, H. Beige, and G. Volkel, Phys. Rev. B. 79, 184111 (2009).
  • S. Bhattacharjee, E. Bousquet, and P. Ghosez, Engineering multiferroism in CaMnO3, Phys. Rev. Lett. 102(11), 117602 (2009).
  • C. Ederer, T. Harris, and R. Kovacik, Phys. Rev. B. 83, 054110 (2011).
  • B. Bersuker, On the origin of ferroelectricity in perovskite-type crystals, Phys. Lett. 20 (6), 589 (1966).
  • (a) I. B. Bersuker, and B. G. Vekhter, Fiz. Tverd. Tela [Sov. Phys. Solid State]. 9, 2452 (1967). Ferroelectrics. 19, 137 (1978). I. B. Bersuker, Ferroelectrics. 164, 75 (1995). (b)I. B. Bersuker, B. G. Vekhter, and A. A. Muzalevskii, Ferroelectrics. 6, 197 (1974). (c) I. B. Bersuker, N. N. Gorinchoy, and T. A. Fedorco, Ferroelectrics. 153, 1 (1994). (d) I. B. Bersuker, J. Phys. Conf. Series. 428, 012028 (2013).
  • V. Z. Polinger, Ferroelectric phase transitions in cubic perovskites, J. Phys: Conf. Ser. 428, 012026 (2013).
  • V. Z. Polinger, P. Garcia-Fernandez, and I. B. Bersuker, Pseudo Jahn–Teller origin of ferroelectric instability in BaTiO3 type perovskites: The Green's function approach and beyond, Physica B. Condens. Mater. 457, 296 (2015).
  • B. Bersuker, N. N. Gorinchoy, and V. Z. Polinger, Theor. Chim. Acta. 66, 161 (1984). I. B. Bersuker, Fiz. Tverd. Tela [Sov. Phys. Solid State]. 30, 1738 (1988). Nouv. J. Chim., 4, 139-145 (1980); Teor. Eksp. Khim. 16, 291 (1980).
  • B. Bersuker, et al., Pseudo Jahn–Teller origin of instability of molecular high-symmetry configurations: Novel numerical method and results, J. Chem. Phys. 117 (23), 10478 (2002).
  • B. Bersuker, and V. Z. Polinger, Vibronic Interactions in Molecules and Crystals, Springer-Verlag, Berlin-Heidelberg, 1989.
  • B. Bersuker, The Jahn-Teller Effect, Cambridge University Press, Cambridge UK, 2006.
  • B. Bersuker, Pseudo-Jahn-teller effect-a two-state paradigm in formation, deformation, and transformation of molecular systems and solids, Chem. Rev. 113(3), 1351 (2013).
  • B. Bersuker, Spontaneous Symmetry Breaking in Matter Induced by Degeneracy and Pseudodegeneracy, in Advances in Chemical Physics, Vol. 160, S. Rice and R. Dinner, eds., Wiley, New York, 2016, pp159–208.
  • B. Bersuker, Electronic Structure and Properties of Transition Metal Compounds. Introduction to the Theory, 2nd ed., Wiley, New York, 2010.
  • M. Ziman, Elements of Advanced Quantum Theory, Cambridge University Press, Cambridge UK, 1975, pp. 120–134.
  • H. Van Vleck, Phys. Rev. 57, 426 (1940).
  • Y. Yamada, and Y. Kanemitsu, Photoluminescence spectra of perovskite oxide semiconductors. J. Luminesc. 133, 30 (2013).
  • H. Kwei, et al., Structures of the ferroelectric phases of barium titanate, J. Phys. Chem. 97 (10), 2368 (1993).
  • V. Polinger, Adv. Quantum Chem. 44, 59 (2003).
  • B. Bersuker, Pseudo Jahn-Teller origin of perovskite multiferroics, magnetic-ferroelectric crossover, and magnetoelectric effects: the d0-d10 problem, Phys. Rev. Lett. 108 (13), 137202 (2012).
  • N. Marzari et al., Maximally localized Wannier functions: Theory and applications, Rev. Mod. Phys. 84 (4), 1419 (2012).
  • S. J. A. van Gisbergen, J. G. Snijders, and E. J. Baerends, Implementation of time-dependent density functional response equations, Comput. Phys. Commun. 118 (2–3), 119 (1999).
  • T. Bredow, P. Heitjans, and M. Wilkening, Phys. Rev. B. 70, 115111 (2004). F. Corà, Mol. Phys. 103, 2483 (2005). M. P. Habas, R. Dovesi, and A. Lichanot, J. Phys. Condens. Matter. 10, 6897 (1998).
  • H. J. Monkhorst, and J. D. Pack, Special points for Brillouin-zone integrations, Phys. Rev. B. 13(12), 5188 (1976).
  • R. Dovesi et al., 220, 571 (2005)., Z. Kristallogr.
  • P. Gütlich and H. A. Goodwin, eds., Spin Crossover in Transition Metal Compounds, Springer-Verlag, Berlin, Heidelberg, 2004, vol. I, II, and III.
  • A. Hauser et al., Low-temperature lifetimes of metastable high-spin states in spin-crossover and in low-spin iron(II) compounds: The rule and exceptions to the rule, Coord. Chem. Rev. 250 (13–14), 1642 (2006).
  • N. E. Domracheva, et al., Detailed EPR study of spin crossover dendrimeric iron(III) complex. J Phys Chem B. 117 (25), 7833 (2013).
  • O. Raymond et al., Multiferroic properties and magnetoelectric coupling in highly textured Pb(Fe0.5Nb0.5)O3 thin films obtained by RF sputtering, Acta Mater. 66, 184 (2014).
  • L. Weston, X. Y. Cui, S. P. Ringer, and C. Stampfl, Bistable magnetism and potential for voltage-induced spin crossover in dilute magnetic ferroelectrics, Phys. Rev. Lett. 114 (24), 247601 (2015).
  • L. Weston, et al., Phys. Rev. B. 93, 165210 (2016).
  • L. Weston, et al., Phys. Rev. B. 94, 184419 (2016).
  • I. B. Bersuker, Sov. Phys.-JETP 16, 933 (1963).
  • M. Gomez, S. P. Bowen, and J. A. Krumhans, Physical properties of an off-center impurity in the tunneling approximation. I. Statics, Phys. Rev. 153 (3), 1009 (1967).
  • I. B. Bersuker, Pseudo Jahn–Teller effect in the origin of enhanced flexoelectricity. Appl. Phys. Lett. 106(2), 022903 (2015).
  • I. B. Bersuker, Giant permittivity and electrostriction induced by dynamic Jahn-Teller and pseudo Jahn-Teller effects, Appl. Phys. Lett. 107 (20), 202904 (2015).
  • V. Z. Polinger, and I. B. Bersuker, Pseudo Jahn-Teller effect in permittivity of ferroelectric perovskites, J. Phys: Conf. Ser. 833, 012012 (2017).
  • I. B. Bersuker, The Jahn-Teller and pseudo Jahn-Teller effect in materials science, J. Phys: Conf. Ser. 833, 012001 (2017).
  • S. M. Kogan, Sov. Phys. Solid State. 5, 2069 (1964).
  • P. Zubko, G. Catalan, and A. K. Tagantsev, Flexoelectric effect in solids, Annu. Rev. Mater. Res. 43(1), 387 (2013).
  • W. Ma, Phys. Status Solid. B. 247, 213 (2010). W. Ma, and L. E. Cross, Appl. Phys. Lett. 79, 4420 (2001). 81, 3440 (2002); 88, 232902 (2006).
  • T. H. Nguyen et al., Nanoscale flexoelectricity. Adv. Mater. Weinheim. 25(7), 946 (2013).
  • P. V. Yudin, R. Ahluwalia, and A. K. Tagantsev, Appl. Phys. Lett. 104, 082913 (2014).
  • A. Biancoli, et al., Breaking of macroscopic centric symmetry in paraelectric phases of ferroelectric materials and implications for flexoelectricity, Nat. Mater. 14 (2), 224 (2015).
  • R. Maranganti, N. D. Sharma, and P. Sharma, Phys. Rev. B. 74, 014110 (2006).
  • J. Narvaez, and G. Catalan, Origin of the enhanced flexoelectricity of relaxor ferroelectrics. Appl. Phys. Lett. 104 (16), 162903 (2014).
  • Y. Li et al., Enhanced flexoelectric effect in a non-ferroelectric composite. Appl. Phys. Lett. 103 (14), 142909 (2013).
  • J. Hong, et al., The flexoelectricity of barium and strontium titanates from first principles, J Phys Condens Matter. 22 (11), 112201 (2010).
  • J. Hong, and D. Vanderbilt, Phys. Rev. B. 88, 174107 (2013).
  • F. Chen et al., Phys. Rev. B. 94, 180104 (2016).
  • K. Wieczorek et al., Electrostrictive and piezoelectric effect in BaTiO3 and PbZrO3. Ferroelectrics. 336 (1), 61 (2006).
  • S. Wada et al., Origin of ultrahigh dielectric constants for barium titanate nanoparticles. J. Korean Phys. Soc. 51 (92), 878 (2007).
  • A. Kumar Kalyani et al., Anatoliy Senyshyn and Rajeev Ranjan, Phys. Rev. B 91, 104104 (2015).
  • E. Burcsu, G. Ravichandran, and K. Bhattacharya, Large strain electrostrictive actuation in barium titanate. Appl. Phys. Lett. 77(11), 1698 (2000).
  • Z. Surowiak, E. G. Fesenko, and R. Skulski, Arch. Acoust. 24, 391 (1999).
  • P. Hohenberg, and W. Kohn, Phys. Rev. B. 136, 864 (1964).
  • M. Levy, Proc. Nat. Acad. Sci. USA, 7. 6062 (1979). and Phys. Rev. A. 2. 1200 (1982). E. Lieb, Int. J. Quantum Chem. 4, 243 (1983).
  • E. S. Kryachko, and E. V. Ludena, Energy Density Functional Theory of Many-Electron Systems, Dordrecht: Kluwer, 1990.
  • H. S. Yu, S. L. Li, and D. G. Truhlar, Perspective: Kohn-Sham density functional theory descending a staircase, J. Chem. Phys. 145 (13), 130901 (2016).
  • J. Erhard, P. Bleiziffer, and A. Görling, Power series approximation for the correlation kernel leading to Kohn-Sham methods combining accuracy, computational efficiency, and general applicability, Phys. Rev. Lett. 117 (14), 143002 (2016).
  • R. van Leeuwen, and E. K. U. Gross, Multicomponent Density-Functional Theory, in Time Dependent Density Functional Theory, Lecture Notes in Physics, Berlin, Springer, 2006, vol. 706, pp. 93–106.
  • P. Garcia-Fernandez, et al., Phys. Rev. B. 93, 195137 (2016).
  • I. B. Bersuker, J. Comput. Chem. 18 (2), 260 (1997).
  • A. F. Devonshire, XCVI. Theory of barium titanate. Phil. Mag. 40 (309), 1040 (1949).
  • D. Hou et al., Temperature-induced local and average structural changes in BaTiO3 − x Bi (Zn1/2Ti1/2)O3 solid solutions: The origin of high temperature dielectric permittivity. J. Appl. Phys. 122 (6), 064103 (2017).
  • M. Bugnet et al., Phys. Rev. B. 93, 020102 r) (2016).
  • G. Henning Olsen et al., Phys. Rev. B. 93, 180101(r) (2016).
  • V. Z. Polinger, Off-center instability of Nb5+ in KNbO3 under ambient pressure. Chem. Phys. 459, 72 (2015).
  • T. G¨unter et al., Phys. Rev. B. 85, 214120 (2012).
  • H. Sakai et al., Displacement-type ferroelectricity with off-center magnetic ions in perovskite Sr(1-x)Ba(x)MnO3, Phys. Rev. Lett. 107 (13), 137601 (2011).
  • S. Anwar, P. R. Sagdeo, and N. P. Lalla, Crossover from classical to relaxor ferroelectrics in BaTi1−xHfxO3 ceramics, J. Phys: Condens. Matter. 18 (13), 3455 (2006).
  • S. Liu, et al., Phys. Rev. B. 88, 104102 (2013).
  • K. Nishimura et al., High-pressure synthesis of BaVO3: A new cubic perovskite, J. Phys. Chem. Solids. 75(6), 710 (2014).
  • W. J. A. Maaskant, and I. B. Bersuker, A combined Jahn-Teller and pseudo-Jahn-Teller effect: an exactly solvable model. J. Phys: Condens. Matter . 3(1), 37 (1991).
  • S. Guang, and Z. Weiyi, Phys. Rev. B. 94, 064409 (2016).
  • J. Hlinka et al., Phys. Rev. B. 94, 180104(R) (2016).
  • V. Mishra et al., Electronic and optical properties of BaTiO3 across tetragonal to cubic phase transition: An experimental and theoretical investigation, J. Appl. Phys. 122 (6), 065105 (2017).,
  • M. S. Senn et al., Emergence of long-range order in BaTiO3 from local symmetry-breaking distortions. Phys. Rev. Lett. 116 (20), 207602 (2016).,
  • J. Harada, J. D. Axe, and G. Shirane, Neutron-Scattering Study of Soft Modes in Cubic BaTi O3. Phys. Rev. B. 4 (1), 155 (1971).
  • Y. Luspin, J. L. Servoin, and F. Gervais, Soft mode spectroscopy in barium titanate. J. Phys. C: Solid State Phys. 13 (19), 3761 (1980).
  • H. Vogt, J. A. Sanjurjo, and G. Rossbroich, Soft-mode spectroscopy in cubic BaTiO3 by hyper-Raman scattering. Phys. Rev. B. 26 (10), 5904 (1982).
  • A. Pramanick et al., Phys. Rev. B. 92, 174103 (2015).
  • K. Jae-Hyeon et al., Phys. Rev. B 84, 094123 (2011). M. A. Helal, M. Aftabuzzaman, S. Tsukada, and S. Kojima, Sci. Rep. 7, 44448 (2017).
  • B. Cai et al., Phys. Rev. B. 93, 224107 (2016).
  • H. Tian et al., 13751 (2015). P. Tan et al., Field-driven electro-optic dynamics of polar nanoregions in nanodisordered KTa1−xNbx O3 crystal. Appl. Phys. Lett. 111 (1), 012903 (2017).,
  • T. Kenji, S. Rikiya, and T. Michiyoshi, Phys. Rev. B. 86, 214106 (2012).
  • A. A. Bokov, and Z.-G. Ye, Recent progress in relaxor ferroelectrics with perovskite structure. J. Mater. Sci. 41 (1), 31 (2006).
  • R. A. Cowley et al., Relaxing with relaxors: a review of relaxor ferroelectrics. Adv. Phys. 60(2), 229 (2011).
  • I. B. Bersuker, and V. Z. Polinger, in 24th International Symposium on the Jahn-Teller Effect, Book of Abstracts, Cantabria University, 2018, pp. 30 and 46; Phys. Rev. B, submitted.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.