210
Views
1
CrossRef citations to date
0
Altmetric
Articles

Synthesis and thermoelectric properties of Ba2TiFeO6 double perovskite with insight into the crystal structure

, , &
Pages 146-155 | Received 13 Jun 2018, Accepted 03 Aug 2018, Published online: 19 Mar 2019

References

  • S.B. Riffat, X. Ma, Thermoelectrics: A review of present and potential applications, Appl. Therm. Eng. 23, 913 (2003). doi:10.1016/S1359-4311(03)00012-7.
  • M. Ito, W.-S. Seo, K. Koumoto, Thermoelectric properties of PbTe thin films prepared by gas evaporation method, J. Mater. Res. 14, 209 (1999).
  • H.J. Goldsmid, XXVII. Thermoelectric applications of semiconductors, J. Electron. Control. 1, 218 (1955). doi:10.1080/00207215508961410.
  • H.J. Goldsmid, R.W. Douglas, The use of semiconductors in thermoelectric refrigeration, Br. J. Appl. Phys. 5, 386 (1954). doi:10.1088/0508-3443/5/12/513.
  • K. Kishimoto, T. Koyanagi, Preparation of sintered degenerate n-type PbTe with a small grain size and its thermoelectric properties, J. Appl. Phys. 92, 2544 (2002). doi:10.1063/1.1499206.
  • J.P. Heremans, C.M. Thrush, D.T. Morelli, Thermopower enhancement in lead telluride nanostructures, Phys. Rev. B - Condens. Matter Mater. Phys. 70 (2004). doi:10.1103/PhysRevB.70.115334.
  • C.-H. Kuo, et al., p-Type PbTe thermoelectric bulk materials with nanograins fabricated by attrition milling and spark plasma sintering, J. Electron. Mater. 38, 1956 (2009). doi:10.1007/s11664-009-0677-7.
  • M. Ohtaki, Recent aspects of oxide thermoelectric materials for power generation from mid-to-high temperature heat source, J. Ceram. Soc. Japan. 119, 770 (2011). doi:10.2109/jcersj2.119.770.
  • J.W. Fergus, Oxide materials for high-temperature thermoelectric energy conversion, J. Eur. Ceram. Soc. 32, 525 (2012). doi:10.1016/j.jeurceramsoc.2011.10.007.
  • I. Terasaki, Y. Sasago, K. Uchinokura, Large thermoelectric power in NaCo2O4 single crystals, Phys. Rev. B. 56, R12685 (1997). doi:10.1103/PhysRevB.56.R12685.
  • M. Ohtaki, et al., High-temperature thermoelectric properties of (Zn1 − xAlx)O, J. Appl. Phys. 79, 1816 (1996). doi:10.1063/1.360976.
  • M. Ohtaki, et al., Electrical transport properties and high-temperature thermoelectric performance of (Ca0.9M0.1)MnO3 (M = Y, La, Ce, Sm, In, Sn, Sb, Pb, Bi), J. Solid State Chem. 120, 105 (1995). doi:10.1006/jssc.1995.1384.
  • T. Okuda, et al., Large thermoelectric response of metallic perovskites: Sr1-xLaxTiO3 (0∼x∼0.1), Phys. Rev. B. 63, 3 (2001). doi:10.1103/PhysRevB.63.113104.
  • H. Suzuki, et al., Superconductivity in single-crystalline Sr1-xLaxTiO3, J. Phys. Soc. Japan. 65, 1529 (1996). doi:10.1143/JPSJ.65.1529.
  • N. Wang, et al., Enhanced thermoelectric performance of Nb-doped SrTiO3 by nano-inclusion with low thermal conductivity, Sci. Rep. 3, 3449 (2013). doi: 10.1038/srep03449.
  • S. Ohta, et al., High-temperature carrier transport and thermoelectric properties of heavily La- Or Nb-doped SrTiO3 single crystals, J. Appl. Phys. 97, 034106 (2005). doi:10.1063/1.1847723.
  • P. Roy, V. Waghmare, T. Maiti, Environmentally friendly BaxSr 2−xTiFeO6 double perovskite with enhanced thermopower for high-temperature thermoelectric power generation, RSC Adv. 6, 54636 (2016). doi:10.1039/C6RA09629H.
  • P. Roy, et al., Large change in thermopower with temperature driven p-n type conduction switching in environment-friendly BaxSr2-xTi0.8Fe0.8Nb0.4O6 double perovskites, Phys. Chem. Chem. Phys. 19, 5818 (2017). doi:10.1039/C6CP06273C.
  • W. Li, et al., Evaluation of double perovskite Sr2FeTiO6−δ as potential cathode or anode materials for intermediate-temperature solid oxide fuel cells, Ceram. Int. 41, 12393 (2015). doi:10.1016/j.ceramint.2015.06.074.
  • P. Roy, I. Bose, T. Maiti, Synthesis and characterization of Sr2TiMO6 (M = Fe, Co) double perovskites for high-temperature thermoelectric applications, Integr. Ferroelectr. 174, 34 (2016). doi:10.1080/10584587.2016.1190253.
  • M. Saxena, et al., Enhanced thermoelectric figure-of-merit in environmentally benign BaxSr2-xTiCoO6 double perovskites, Appl. Phys. Lett. 109, 263903 (2016). doi:10.1063/1.4973281.
  • M. Saxena, K. Tanwar, T. Maiti, Environmental friendly Sr2TiMoO6 double perovskite for high-temperature thermoelectric applications, Scr. Mater. 130, 205 (2017). doi:10.1016/j.scriptamat.2016.11.033.
  • M. Saxena, T. Maiti, Effect of Ba-doping on high-temperature thermoelectric properties of Sr2TiMoO6 double perovskites, J. Alloys Compd. 710, 472 (2017). doi:10.1016/j.jallcom.2017.03.264.
  • M. Saxena, T. Maiti, Metal-like electrical conductivity in Lax Sr2−xTiMoO6 oxides for high-temperature thermoelectric power generation, Dalt. Trans. 46, 5872 (2017). doi:10.1039/C7DT00848A.
  • O.N. Meetei, et al., Theory of half-metallic double perovskites. I. Double exchange mechanism, Phys. Rev. B - Condens. Matter Mater. Phys. 87, 165104 (2013). doi:10.1103/PhysRevB.87.165104.
  • O. Erten, et al., Theory of half-metallic double perovskites. II. Effective spin Hamiltonian and disorder effects, Phys. Rev. B – Condens. Matter Mater. Phys. 87, 165105 (2013). doi:10.1103/PhysRevB.87.165105.
  • O. Erten, et al., Theory of half-metallic ferrimagnetism in double perovskites, Phys. Rev. Lett. 107, 257201 (2011). doi:10.1103/PhysRevLett.107.257201.
  • J. Rodríguez-Carvajal, Introduction to the Program FULLPROF: Refinement of Crystal and Magnetic Structures from Powder and Single Crystal Data, Lab. Léon Brillouin (CEA-CNRS), CEA/Saclay, 91191 Gif Sur Yvette Cedex, France, 2015.
  • N.F. Mott, L. Friedman, Metal-insulator transitions in {VO2}, {Ti2O3} and Ti2-{xVxO3}, Philos. Mag. 30, 389–402 (1974). doi:10.1080/14786439808206565.
  • P.A. Cox, Transition Metal Oxides: Paperback (Oxford University Press, P.A. Cox 2010). http://ukcatalogue.oup.com/product/9780199588947.do#.
  • E. Gorham-Bergeron, D. Emin, Phonon-assisted hopping due to interaction with both acoustical and optical phonons, Phys. Rev. B. 15, 3667 (1977). doi:10.1103/PhysRevB.15.3667.
  • J.B. Goodenough, Metallic oxides, Prog. Solid State Chem. 5, 145 (1971). doi:10.1016/0079-6786(71)90018-5.
  • R. Moos, A. Gnudi, K.H. Härdtl, Thermopower of Sr1-xLaxTiO3 ceramics, J. Appl. Phys. 78, 5042 (1995). doi:10.1063/1.359731.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.