90
Views
0
CrossRef citations to date
0
Altmetric
Articles

Dispatching microfluid for a paper-based microfluidic device based on surface acoustic wave

, &
Pages 246-254 | Received 25 Feb 2018, Accepted 23 Sep 2018, Published online: 13 May 2019

References

  • L. M. Fu , W. J. Ju , C. C. Liu , R. J. Yang , Y. N. Wang , Integrated microfluidic array chip and LED photometer system for sulfur dioxide and methanol concentration detection, Chem. Eng. J. 243, 421–427 (2014).
  • A. Tudor , J. Saez , and L. Florea , Poly(ionic liquid) thermo-responsive hydrogel microfluidic actuators, Sens. Actuators B, 247, 749–755 (2017).
  • X. Weng , and S. Neethirajan , Ensuring food safety: Quality monitoring using microfluidics, Trends in Food Sci. Technol., 65, 10–22 (2017).
  • H. H. Kim , D. H. Park , B. H. Ryu , and K. J. Lim , Design and modeling of piezoelectric pump for microfluid devices, Ferroelectrics, 378, 92–100 (2009).
  • H. J. Pandya , K. Dhingra , and D. Prabhakar , A microfluidic platform for drug screening in a 3D cancer microenvironment, Biosens. Bioelectron. 94, 632–642 (2017).
  • S. A. Hosseini , S. Zanganeh , and E. Akbarnejad , Microfluidic device for label-free quantitation and distinction of bladder cancer cells from the blood cells using micro machined silicon based electrical approach, J. Pharm. Biomed. Anal. 134, 36–42 (2017).
  • D. Nieto , R. Couceiro , and M. Aymerich , A laser-based technology for fabricating a soda-lime glass based microfluidic device for circulating tumour cell capture, Colloids Surf. B, 134, 363–369 (2015).
  • T. M. G. Cardoso , F. R. de Souza , and P. T. Garcia , Versatile fabrication of paper-based microfluidic devices with high chemical resistance using scholar glue and magnetic masks, Anal. Chim. Acta 974, 63–68 (2017).
  • L. W. Dong , Y. L. Hu , Y. F. Han , and A. L. Zhang , Splitting droplets in a channel by help of surface acoustic wave, Ferroelectrics 502, 19–27 (2016).
  • Y. Y. Xue , W. T. Zhang , and M. Y. Zhang , Development of a paper-based microfluidic analytical device by a more facile hydrophobic substrate generation strategy, Anal. Biochem. 525, 100–106 (2017).
  • T. Akyazi , N. G. González , and L. B. Desmonts , Manipulation of fluid flow direction in microfluidic paper-based analytical devices with an ionogel negative passive pump. Sens. Actuators B 247,114–123 (2017).
  • R. A. G. Oliveira , F. Camargo , N. C. Pesquero , and R. C. Faria , A simple method to produce 2D and 3D microfluidic paper-based analytical devices for clinical analysis, Anal. Chim. Acta 957, 40–46 (2017).
  • B. H. Park , J. O. Seung , J. H. Jung , G. Choi , J. H. Seo , D. H. Kim , E. Y. Lee , and T. S. Seo , An integrated rotary microfluidic system with DNA extraction, loop-mediated isothermal amplification, and lateral flow strip based detection for point-of-care pathogen diagnostics, Biosens. Bioelectron. 91, 334–340 (2017).
  • Y. Zhang , P. Zuo , and B. C. Ye , A low-cost and simple paper-based microfluidic device for simultaneous multiplex determination of different types of chemical contaminants in food, Biosens. Bioelectron. 68, 14–19 (2015).
  • R. Meelapsom , P. Jarujamrus , M. Amatatongchai , S. Chairam , C. Kulsing , and W. Shen , Chromatic analysis by monitoring unmodified silver nanoparticles reduction on double layer microfluidic paper-based analytical devices for selective and sensitive determination of mercury(II), Talanta 155, 193–201 (2016).
  • S. A. Bhakta , R. Borba , M. Taba Jr , C. D. Garcia , and E. Carrilho , Determination of nitrite in saliva using microfluidic paper-based analytical devices, Anal. Chim. Acta. 809, 117–122 (2014).
  • H. Liu , and R. M. Crooks , Three-dimensional paper microfluidic devices assembled using the principles of origami, J. Am. Chem. Soc. 133, 17564–17566 (2011).
  • W. Dungchai , O. Chailapakul , and C. S. Henry , A low-cost, simple, and rapid fabrication method for paper-based microfluidics using wax screen-printing, Analyst 136, 77–82 (2011).
  • M. M. Mentele , J. Cunningham , K. Koehler , J. Volckens , and C. S. Henry , Microfluidic paper-based analytical device for particulate metals, Anal. Chem. 84, 4474–4480 (2012).
  • U. Toyokazu , S. Takayuki , and S. Showko , Investigation of acoustic streaming excited by surface acoustic waves, IEEE Ultrasonics Symposium, New York, USA, Nov. 7–10, pp. 1081–1084 (1995).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.