185
Views
1
CrossRef citations to date
0
Altmetric
Articles

Energy harvesting performance of two side-by-side piezoelectric energy harvesters in fluid flow

, , , , &
Pages 27-36 | Received 13 Apr 2018, Accepted 23 Sep 2018, Published online: 13 May 2019

References

  • M. Lallart , et al. , High efficiency, wide load bandwidth piezoelectric energy scavenging by a hybrid nonlinear approach. Sens. Actuators, A 165 (2), 294 (2011).
  • X. Shan , Z. Xu , and T. Xie. New electromechanical coupling model and optimization of an electromagnetic energy harvester. Ferroelectrics 450 (1), 66 (2013).
  • X. Shan , et al. , A new mathematical model for a piezoelectric-electromagnetic hybrid energy harvester. Ferroelectrics 450 (1), 57 (2013).
  • N. G. Elvin , and A. A. Elvin. An experimentally validated electromagnetic energy harvester. J. Sound Vib. 330 (10), 2314 (2011).
  • S. Zhou , and Z. Lei. Nonlinear dynamic analysis of asymmetric tristable energy harvesters for enhanced energy harvesting [J]. Commun. Nonlinear Sci. 61, 271–284 (2018).
  • H. Wang , et al. , Modeling and performance evaluation of a piezoelectric energy harvester with segmented electrodes. Smart Struct. Syst. 14 (2), 247 (2014).
  • J. Yuan , et al. , Performance of a drum transducer for scavenging vibration energy. J. Intell. Mater. Syst. Struct. 20 (14), 1771 (2009).
  • J. Yuan , et al. , Modeling and improvement of a cymbal transducer in energy harvesting. J. Intell. Mater. Syst. Struct . 21, 765 (2010).
  • G. W. Taylor , et al. , The energy harvesting eel: A small subsurface ocean/river power generator. IEEE J. Oceanic Eng. 26(4), 539 (2001).
  • J. J. Allen , and A. J. Smits. Energy harvesting eel. J. Fluids Struct. 15 (3–4), 629 (2001).
  • X. Amandolèse , and P. Hémon. Vortex-induced vibration of a square cylinder in wind tunnel. C.R. Mec . 338 (1), 12 (2010).
  • S. Bourdier , and J. R. Chaplin. Vortex-induced vibrations of a rigid cylinder on elastic supports with end-stops, part 1: Experimental results. J. Fluids Struct. 29, 62 (2012).
  • A. Barrero-Gil , S. Pindado , and S. Avila. Extracting energy from vortex-induced vibrations: A parametric study. Appl. Math. Modell. 36(7), 3153 (2012).
  • H. D. Akaydın , N. Elvin , and Y. Andreopoulos. Wake of a cylinder: A paradigm for energy harvesting with piezoelectric materials. Exp. Fluids 49 (1), 291 (2010).
  • G. R. S. Assi. Wake-induced vibration of tandem cylinders of different diameters. J. Fluids Struct. 50, 329 (2014).
  • G. R. S. Assi. Wake-induced vibration of tandem and staggered cylinders with two degrees of freedom. J. Fluids Struct .50, 340 (2014).
  • A. Deivasigamani , et al. , Flutter of cantilevered interconnected beams with variable hinge positions. J. Fluids Struct. 38, 223 (2013).
  • O. Doaré , and S. Michelin. Piezoelectric coupling in energy-harvesting fluttering flexible plates: linear stability analysis and conversion efficiency. J. Fluids Struct. 27(8), 1357 (2011).
  • L. Huang , and C. Zhang. Modal analysis of cantilever plate flutter. J. Fluids Struct .38, 273 (2013).
  • L. Tang , M. P. Païdoussis , and J. Jiang. Cantilevered flexible plates in axial flow: energy transfer and the concept of flutter-mill. J. Sound Vib .326 (1–2), 263 (2009).
  • H. Dai , A. Abdelkefi , and L. Wang. Theoretical modeling and nonlinear analysis of piezoelectric energy harvesting from vortex-induced vibrations. J. Intell. Mater. Syst. Struct. 25 (14), 1861 (2014).
  • H. Dai , et al. , Modeling and identification of circular cylinder-based piezoaeroelastic energy harvesters. Energy Procedia. 61, 2818 (2014).
  • H. L. Dai , A. Abdelkefi , and L. Wang. Piezoelectric energy harvesting from concurrent vortex-induced vibrations and base excitations. Nonlinear Dyn. 77 (3), 967 (2014).
  • A. Abdelkefi , M. R. Hajj , and A. H. Nayfeh. Phenomena and Modeling of Piezoelectric Energy Harvesting from Freely Oscillating Cylinders. Nonlinear Dyn. 70(2), 1377 (2012).
  • H. L. Dai , et al. , Orientation of bluff body for designing efficient energy harvesters from vortex-induced vibrations. Appl. Phys. Lett. 108 (5), 053902 (2016).
  • H. D. Akaydin , N. Elvin , and Y. Andreopoulos. The performance of a self-excited fluidic energy harvester. Smart Mater. Struct. 21 (2), 025007 (2012).
  • R. Song , et al. , A study of vortex-induced energy harvesting from water using pzt piezoelectric cantilever with cylindrical extension. Ceram. Int .41, S768 (2015).
  • M. Zhang , Y. Liu , and Z. Cao. Modeling of piezoelectric energy harvesting from freely oscillating cylinders in water flow. Math. Probl. Eng. 2014, 1 (2014).
  • X. Gao , W.-H. Shih , and W. Y. Shih. Flow energy harvesting using piezoelectric cantilever with cylindrical extension. IEEE Trans. Ind. Electron. 60 (3), 1116 (2013).
  • X. Shan , et al. , Energy-harvesting performances of two tandem piezoelectric energy harvesters with cylinders in water. Applied Sciences 6 (8), 230 (2016).
  • R. Song , et al. , A novel piezoelectric energy harvester using the macro fiber composite cantilever with a bicylinder in water. Appl. Sci. 5 (4), 1942 (2015). :
  • A. Abdelkefi , J. M. Scanlon , E. McDowell , and M. R. Hajj. Performance enhancement of piezoelectric energy harvesters from wake galloping. Appl. Phys. Lett. 103 (3), 033903 (2013).
  • S. Zhou , J. Wang . Dual serial vortex-induced energy harvesting system for enhanced energy harvesting. AIP ADV. 8(7), 075221 (2018).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.