117
Views
2
CrossRef citations to date
0
Altmetric
SECTION C: Relaxor Ferroelectrics

Vibrational Dynamics of Ferroelectric K(Ta1-xNbx)O3 Studied by Inelastic Light Scattering

, , , &
Pages 96-104 | Received 14 May 2018, Accepted 31 Oct 2018, Published online: 17 May 2019

References

  • Y. C. Chang et al., Giant electro-optic effect in nanodisordered KTN crystals. Opt. Lett. 38 (22), 4574 (2013). DOI: 10.1364/OL.38.004574.
  • Y. Li et al., Frequency dependent electro-optic properties of potassium lithium tantalate niobate single crystal. Ferroelectrics. 425 (1), 82 (2011). DOI: 10.1080/00150193.2011.635547.
  • A. Agranat, R. Hofmeister, and A. Yariv , Characterization of a new photorefractive material: K1-yLyT1-xNx. Opt. Lett. 17 (10), 713 (1992). DOI: 10.1364/OL.17.000713.
  • T. Imai et al., Fast response variable focal-length lenses using KTa1-xNbxO3 crystals. Appl. Phys. Express. 4 (2), 022501 (2011). DOI: 10.1143/APEX.4.022501.
  • M. Ohmi et al., Development of novel high-speed en face optical coherence tomography system using KTN optical beam deflector. Appl. Phys. Express. 8 (2), 027001 (2015). DOI: 10.7567/APEX.8.027001.
  • D. Phelan et al., Role of random electric fields in relaxors. Proc. Natl. Acad. Sci. USA. 111 (5), 1754 (2014). DOI: 10.1073/pnas.1314780111.
  • A. A. Bokov and Z. G. Ye, Recent progress in relaxor ferroelectrics with perovskite structure. J. Mater. Sci. 41 (1), 31 (2006). DOI: 10.1007/s10853-005-5915-7.
  • J. H. Ko et al., Effect of chemically ordered regions on the acoustic behaviors in Pb(Mg1/3Nb2/3)O3 studied by Brillouin scattering. J. Appl. Phys. 107 (5), 054108 (2010). DOI: 10.1063/1.3346405.
  • O. Hanske-Petitpierre et al., Off-center displacement of the Nb ions below and above the ferroelectric phase transition of KTa0.91Nb0.09O3. Phys. Rev. B. 44 (13), 6700 (1991). DOI: 10.1103/PhysRevB.44.6700.
  • V. Polinger, Off-center instability of Nb5+ in KNbO3 under ambient pressure. Chem. Phys. 459, 72 (2015). DOI: 10.1016/j.chemphys.2015.07.028.
  • J. P. Sokoloff, L. L. Chase, and L. A. Boatner, Low-frequency relaxation modes and structural disorder in KTa1-xNbxO3. Phys. Rev. B. 41 (4), 2398 (1990). DOI: 10.1103/PhysRevB.41.2398.
  • G. Burns and F. H. Dacol, Crystalline ferroelectric with glassy polarization behaviour. Phys. Rev. B. 28 (5), 2527 (1983). DOI: 10.1103/PhysRevB.28.2527.
  • M. M. Rahaman et al., Relaxor-like dynamics of ferroelectric K(Ta1-xNbx)O3 crystals probed by inelastic light scattering. J. Appl. Phys. 116 (7), 074110 (2014). DOI: 10.1063/1.4893363.
  • M. M. Rahaman et al., The role of polar-nanoregions in KTa1-xNbxO3 single crystals studied by Raman scattering. Ferroelectrics. 503 (1), 85 (2016). DOI: 10.1080/00150193.2016.1216699.
  • R. Ohta, J. Zushi, T. Ariizumi, and S. Kojima, Order-disorder behavior of ferroelectric phase transition of KTa1-xNbxO3 probed by Brillouin scattering. Appl. Phys. Lett. 98 (9), 092909 (2011). DOI: 10.1063/1.3560345.
  • E. Dul’kin, S. Kojima, and M. Roth, Characteristic temperatures and field effect in KTa1-xNbxO3 relaxor crystals seen via acoustic emission. Europhys. Lett. 97, 57004 (2012). DOI: 10.1209/0295-5075/97/57004.
  • J. Toulouse et al. , Precursor effects and ferroelectric macroregions in KTa1-xNbxO3 and K1-yLiyTaO3. Phys. Rev. Lett. 68 (2), 232 (1992). DOI: 10.1103/PhysRevLett.68.232.
  • W. Kleemann, F. J. Schäfer, and D. Rytz, Diffuse ferroelectric phase transition and long-range order of dilute KTa1-xNbxO3. Phys. Rev. Lett. 54 (18), 2038 (1985). DOI: 10.1103/PhysRevLett.54.2038.
  • M. M. Rahaman, T. Imai, T. Sakamoto, and S. Kojima, Electric field effects on polar-nanoregions in Li-doped KTa1-xNbxO3 single crystals probed by micro-Brillouin scattering. Integr Ferroelectr. 185 (1), 22 (2017). DOI: 10.1080/10584587.2017.1370282.
  • U. Fano, Effects of configuration interaction on intensities and phase shifts. Phys. Rev. 124 (6), 1866 (1961). DOI: 10.1103/PhysRev.124.1866.
  • A. A. Sirenko et al., Observation of the first-order Raman scattering in SrTiO3 thin films. Phys. Rev. Lett. 82 (22), 4500 (1999). DOI: 10.1103/PhysRevLett.82.4500.
  • S. Banerjee et al., Observation of Fano asymmetry in Raman spectra of SrTiO3 and CaxSr1−xTiO3 perovskite nanocubes. Appl. Phys. Lett. 89 (22), 223130 (2006). DOI: 10.1063/1.2400095.
  • D. L. Rousseau and S. P. S. Porto, Auger-like resonant interference in Raman scattering from one- and two-phonon states of BaTiO3. Phys. Rev. Lett. 20 (24), 1354 (1968). DOI: 10.1103/PhysRevLett.20.1354.
  • A. Pinczuk, E. Burstein, and S. Ushioda, Raman scattering by polaritons in tetragonal BaTiO3. Solid State Commun. 7 (1), 139 (1969). DOI: 10.1016/0038-1098(69)90711-X.
  • D. Wang et al., Fano resonance and dipolar relaxation in lead-free relaxors. Nat. Commun. 5, 5100 (2014). DOI: 10.1038/ncomms6100.
  • P. H. M. van Loosdrecht et al., Raman study of the ferroelectric semiconductor Sn2P2Se6. Phys. Rev. B. 48 (9), 6014 (1993). DOI: 10.1103/PhysRevB.48.6014.
  • S. Yoshino, G. Oohata, and K. Mizoguchi, Dynamical Fano-like interference between Rabi oscillations and coherent phonons in a semiconductor microcavity system. Phys. Rev. Lett. 115, 157402 (2015). DOI: 10.1103/PhysRevLett.115.157402.
  • M. M. Rahaman et al. , Fano resonance of Li-doped KTa1-xNbxO3 single crystals studied by Raman scattering. Sci. Rep. 6, 23898 (2016). DOI: 10.1038/srep23898.
  • S. Tsukada et al., Raman scattering study of the ferroelectric phase transition in BaTi2O5. Phys. Rev. B. 97, 024116 (2018). DOI: 10.1103/PhysRevB.97.024116.
  • S. K. Manlief and H. Y. Fan, Raman spectrum of KTa0.64Nb0.36O3. Phys. Rev. B. 5 (10), 4046 (1972). DOI: 10.1103/PhysRevB.5.4046.
  • G. E. Kugel, M. D. Fontana, and W. Kress, Lattice dynamics of KTa1-xNbxO3. Phys. Rev. B Condens. Matter. 35 (2), 813 (1987). DOI: 10.1103/PhysRevB.35.813.
  • J. Toulouse et al., Temperature evolution of the relaxor dynamics in Pb(Zn1/3Nb2/3)O3: a critical Raman analysis. Phys. Rev. B. 72, 184106 (2005). DOI: 10.1103/PhysRevB.72.184106.
  • M. M. Rahaman et al., Ferroelectric phase transition of Li-doped KTa1-xNbxO3 single crystals with weak random fields: Inelastic light scattering study. J. Alloy Compd. 735, 1063 (2018). DOI: 10.1016/j.jallcom.2017.11.039.
  • K. H. Michel, J. Naudts, and B. D. Raedt, Soft modes and central peak in orientationally disordered crystals. Phys. Rev. B. 18 (2), 648 (1978). DOI: 10.1103/PhysRevB.18.648.
  • O. Svitelskiy, J. Toulouse, G. Yong, and Z. G. Ye, Polarized Raman study of the phonon dynamics in Pb(Mg1/3Nb2/3)O3 crystal. Phys. Rev. B. 68, 114106 (2003). DOI: 10.1103/PhysRevB.68.104107.
  • Y. Yacoby, Defect induced fluctuations in the paraelectric phase of KTa0.94Nb0.6O3. Z Physik B . 31 (3), 275 (1978). DOI: 10.1007/BF01352352.
  • M. S. Islam et al., Role of dynamic polar nanoregions in heterovalent perovskite relaxor: Inelastic light scattering study of ferroelectric Ti rich Pb(Zn1/3Nb2/3)O3-PbTiO3. J. Appl. Phys. 112, 114106 (2012). DOI: 10.1063/1.4768278.
  • H. J. Trodahl et al., Raman spectroscopy of (K,Na)NbO3 and (K,Na)1-xLixNbO3. Appl. Phys. Lett. 93 (26), 262901 (2008). DOI: 10.1063/1.3056658.
  • M. M. Rahaman, T. Imai, J. Kobayashi, and S. Kojima, Effect of Li-doping on polar-nanoregions in K(Ta1-xNbx)O3 single crystals. Jpn. J. Appl. Phys. 54 (10S), 10NB01 (2015). DOI: 10.7567/JJAP.54.10NB01.
  • M. M. Rahaman et al., Micro-Brillouin scattering study on composition gradient Li-doped KTa1-xNbxO3 wafer. Ferroelectrics. 487 (1), 47 (2015). DOI: 10.1080/00150193.2015.1070241.
  • M. V. Klein, Light Scattering in Solids I, edited by M. Cardona (Springer, Berlin, 1984), 147.
  • C. Tomsen, Light Scattering in Solids VII, edited by M. Cardona, and G. Güntherodt (Springer, Berlin, 1991), 285.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.