148
Views
3
CrossRef citations to date
0
Altmetric
SECTION C: Relaxor Ferroelectrics

Structure, dielectric and piezoelectric properties of the BiScO3-PbTiO3-PbMg1/3Nb2/3O3 ceramics

, , , &
Pages 105-112 | Received 14 May 2018, Accepted 31 Oct 2018, Published online: 17 May 2019

References

  • S. Zhang, and F. Li, High performance ferroelectric relaxor-PbTiO3 single crystals: Status and perspective. J. Appl. Phys. 273(1-50), 031301 (2012). DOI: 10.1063/1.3679521.
  • S.-E. Park, and T. R. Shrout, Ultrahigh strain and piezoelectric behavior in relaxor based ferroelectric single crystals. J. Appl. Phys. 82(4), 1804 (1997). DOI: 10.1063/1.365983.
  • E. Sun, and W. Cao, Relaxor-based ferroelectric single crystals: Growth, domain engineering, characterization and applications. Prog. Mater. Sci. 65, 124 (2014). DOI: 10.1016/j.pmatsci.2014.03.006.
  • F. Li et al., Ultrahigh piezoelectricity in ferroelectric ceramics by design. Nat. Mater. 17(4), 349 (2018). DOI: 10.1038/s41563-018-0034-4.
  • M. V. Talanov, L. A. Shilkina, and L. A. Reznichenko, Anomalies of the dielectric and electromechanical responses of multicomponent ceramics on the basis of PMN–PT near the morphotropic phase boundary. Sensor Actuators A Phys. 217, 62 (2014). DOI: 10.1016/j.sna.2014.05.025.
  • R. E. Eitel et al., New high temperature morphotropic phase boundary piezoelectrics based on Bi(Me)O3–PbTiO3 ceramics. Jpn. J. Appl. Phys. 40(Part 1, No. 10), 5999 (2001).
  • Z. Yao, H. Liu, H. Hao, and M. Cao, Structure, electrical properties, and depoling mechanism of BiScO3–PbTiO3–Pb(Zn1/3Nb2/3)O3 high-temperature piezoelectric ceramics. J. Appl. Phys. 109(1), 014105 (2011). DOI: 10.1063/1.3525995.
  • D. Pang, X. Long, and H. Tailor, A lead-reduced ferroelectric solid solution with high curie temperature: BiScO3–Pb(Zn1/3Nb2/3)O3–PbTiO3. Ceram. Int. 40(8), 12953 (2014). DOI: 10.1016/j.ceramint.2014.04.156.
  • Z. Yao et al., Morphotropic phase boundary in Pb(Sc1/2Nb1/2)O3–BiScO3–PbTiO3 high temperature piezoelectrics. Mater. Lett. 62(29), 4449 (2008). DOI: 10.1016/j.matlet.2008.07.048.
  • T.-H. Song et al., Piezoelectric properties in the perovskite BiScO3–PbTiO3–(Ba,Sr)TiO3 ternary system. Jpn. J. Appl. Phys. 42(Part 1, No. 8), 5181 (2003). DOI: 10.1143/JJAP.42.5181.
  • D. Wang et al., Enhanced electrical properties of novel Pb(Ni1/3Nb2/3)O3–BiScO3–PbTiO3 ternary system near morphotropic phase boundary. Jpn. J. Appl. Phys. 52(10R), 101101 (2013). DOI: 10.7567/JJAP.52.101101.
  • Z. Yao et al., Relaxor and ferro/piezoelectric behavior in BiScO3–(Na0.5Bi0.5)TiO3–PbTiO3 piezoelectric ceramics. J. Alloys Compd. 577, S488 (2013). DOI: 10.1016/j.jallcom.2012.03.038.
  • C. J. Stringer, and C. A. Randall, In situ tem investigations of the high-temperature relaxor ferroelectric BiScO3–Pb(Mg1/3Nb2/3)O3–PbTiO3 ternary solid solution. J. Am. Ceram. Soc. 90(6), 1802 (2007). DOI: 10.1111/j.1551-2916.2007.01640.x.
  • C. J. Stringer et al., Dielectric characteristics of perovskite-structured high-temperature relaxor ferroelectrics: the BiScO3–Pb(Mg1/3Nb2/3)O3–PbTiO3 ternary system. J. Am. Ceram. Soc. 91(6), 1781 (2008). DOI: 10.1111/j.1551-2916.2008.02298.x.
  • M. V. Talanov et al., Structure‐property relationships in BiScO3–PbTiO3–PbMg1/3Nb2/3O3 ceramics near the morphotropic phase boundary. J. Am. Ceram. Soc. 101(2), 683 (2018). DOI: 10.1111/jace.15225.
  • A. A. Bush et al., Relaxor ferroelectricproperties of the (1–2x)BiScO3 xPbTiO3 xPbMg1/3Nb2/3O3 (0.30 ≤ x ≤ 0.46) system. Phys. Solid State. 59(1), 34 (2017). DOI: 10.1134/S1063783417010036.
  • A. A. Bush et al., Dielectric and piezoelectric properties of (1–2x)BiScO3 xPbTiO3 xPbMg1/3Nb2/3O3 (0.30 ≤ x ≤ 0.46) solid solutions. Inorg. Mater. 47(7), 779 (2011). DOI: 10.1134/S0020168511070065.
  • V. P. Sirotinkin, A. A. Bush, A. I. Spitsin, and A. G. Segalla, Structure of relaxor ferroelectric (1–2х)BiScO3·хPbTiO3·хPbMg0.33Nb0.67O3 with х = 0.42 in the polarized and depolarized states. Crystallogr. Rep. 63(1), 84 (2018). DOI: 10.1134/S1063774518010169.
  • B. Noheda et al., Phase diagram of the ferroelectric relaxor (1-x)PbMg1/3Nb2/3O3-xPbTiO3. Phys. Rev. B. 66(1-10), 054104 (2002). :
  • Z.-G. Ye et al., Monoclinic phase in the relaxor-based piezoelectric/ferroelectric Pb(Mg1/3Nb2/3)O3-PbTiO3 system. Phys. Rev. B. 64(1-5), 184114 (2001). :
  • A. K. Singh, and D. Pandey, Structure and the location of the morphotropic phase boundary region in (1-x)[Pb(Mg1/3Nb2/3)O3]–xPbTiO3. J. Phys: Condens. Matter. 13, L931 (2001). DOI: 10.1088/0953-8984/13/48/102.
  • J. Chaigneau, J. M. Kiat, C. Malibert, and C. Bogicevic, Morphotropic phase boundaries in (BiScO3)1-x(PbTiO3)x (0.60 < x < 0.75) and their relation to chemical composition and polar order. Phys. Rev. B. 76, 0941111 (2007).
  • K. Datta, D. Walker, and P. A. Thomas, Structural investigations of the bismuth scandate-lead titanate xBiScO3-(1-x)PbTiO3 solid solution for 0.10 ≤ x ≤ 0.40. Phys. Rev. B. 82(1-10), 144108 (2010).
  • B. Noheda et al. , Polarization rotation via a monoclinic phase in the piezoelectric 92% PbZn(1/3)Nb(2/3)O3-8% PbTiO3. Phys. Rev. Lett. 86(17), 3891 (2001). DOI: 10.1103/PhysRevLett.86.3891.
  • Y. Inaguma et al., High-pressure synthesis and ferroelectric properties in perovskite-type BiScO3 –PbTiO3 solid solution. J. Appl. Phys. 95(1), 231 (2004). DOI: 10.1063/1.1629394.
  • J. Chen et al., Structural evidence for the nonmonotonic trend of TC in tetragonal PbTiO3-BiScO3 solid solutions. Appl. Phys. Lett. 96(25), 252908 (2010). DOI: 10.1063/1.3456389.
  • I. Grinberg, and A. M. Rappe, Nonmonotonic TC trends in Bi-based ferroelectric perovskite solid solutions. Phys. Rev. Lett. 98(3), 037603 (2007). DOI: 10.1103/PhysRevLett.98.037603.
  • P. Juhas et al., Correlations between the structure and dielectric properties of Pb(Sc2/3W1/3)O3–Pb(Ti/Zr)O3 relaxors. Phys. Rev. B. 69(1-13), 214101 (2004).
  • P. K. Davies et al.,Crystal chemistry of complex perovskites: new cation-ordered dielectric oxides. Annu. Rev. Mater. Res. 38(1), 369 (2008). DOI: 10.1146/annurev.matsci.37.052506.084356.
  • G. King, and P. M. Woodward, Cation ordering in perovskites. J. Mater. Chem. 20(28), 5785 (2010). DOI: 10.1039/b926757c.
  • V. M. Talanov, M. V. Talanov, and V. B. Shirokov, Group-theoretical study of cationic ordering in perovskite structure. Crystallogr. Rep. 59(5), 650 (2014). DOI: 10.1134/S1063774514050186.
  • A. A. Bokov, Influence of disorder in crystal structure on ferroelectric phase transitions. J. Exp. Theor. Phys. 84(5), 994 (1997). DOI: 10.1134/1.558191.
  • J. Ryu et al., High power piezoelectric characteristics of BiScO3–PbTiO3–Pb(Mn1/3Nb2/3)O3. Jpn. J. Appl. Phys. 41(Part 1, No. 10), 6040 (2002). DOI: 10.1143/JJAP.41.6040.
  • T. Sebastian et al., High temperature piezoelectric ceramics in the Bi(Mg1/2Ti1/2)O3-BiFeO3-BiScO3-PbTiO3 system. J. Electroceram. 25(2-4), 130 (2010). DOI: 10.1007/s10832-010-9600-0.
  • Y. Jiang et al., Phase transition, piezoelectric properties, and thermal stability of (1-x-y)BiScO3–yBiGaO3–xPbTiO3 ceramics. J. Am. Ceram. Soc. 91(9), 2943 (2008). DOI: 10.1111/j.1551-2916.2008.02580.x.
  • F. Zhu et al., Diffuse dielectric behaviour in Na0.5K0.5NbO3–LiTaO3–BiScO3 lead-free ceramics. Mater. Chem. Phys. 129(1-2), 411 (2011). DOI: 10.1016/j.matchemphys.2011.04.032.
  • Z. Yao et al., Structure and ferroelectric properties in (K0.5Bi0.5)TiO3–BiScO3–PbTiO3 piezoelectric ceramic system. MRS Bull. 44(7), 1511 (2009). DOI: 10.1016/j.materresbull.2009.02.012.
  • T.-H. Song et al., Properties in the BiScO3–PbTiO3–PbO·SnO2 ternary system. Jpn. J. Appl. Phys. 43(8A), 5392 (2004). DOI: 10.1143/JJAP.43.5392.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.