45
Views
1
CrossRef citations to date
0
Altmetric
Articles

Dielectric properties of Pb2In3+B5+O6 (B5+- Nb, Ta) ceramics sintered from mechanochemically synthesized nanopowders

, , , , , , , & show all
Pages 28-35 | Received 29 Aug 2018, Accepted 26 Nov 2018, Published online: 09 Jul 2019

References

  • S. Zhang, and F. Li, High performance ferroelectric relaxor-PbTiO3 single crystals: status and perspective, J. Appl. Phys. 111(3), 031301 (2012). DOI: 10.1063/1.3679521.
  • S. I. Raevskaya et al., Critical nature of the giant field-induced pyroelectric response in PbMg1/3Nb2/3O3-PbTiO3 single crystals, Appl. Phys. Lett. 93(4), 042903 (2008). DOI: 10.1063/1.2966147.
  • A. Sternberg et al., Morphotropic ceramic solid solutions of the Pb(B31/2Nb1/2)O3 - PbTiO3 binary system, Ferroelectrics. 241(1), 51 (2000). DOI: 10.1080/00150190008224974.
  • E. Dul'kin, I. P. Raevski, and S. M. Emel'yanov, Acoustic emission and thermal expansion of Pb(Mg1/3Nb2/3)O3 and Pb(Mg1/3Nb2/3)O3–PbTiO3 crystals, Phys. Solid State. 45, 158 (2003).
  • Y. N. Zakharov et al., Field-induced enhancement of pyroelectric response of PbMg1/3Nb2/3O3-PbTiO3 and PbFe1/2Nb1/2O3-PbTiO3 solid solution ceramics, Ferroelectrics. 399(1), 20 (2010). DOI: 10.1080/00150193.2010.489850.
  • D. A. Sanchez et al., Room-temperature single phase multiferroic magnetoelectrics: Pb(Fe,M)x(Zr,Ti)(1−x)O3 [M = Ta, Nb], J. Appl. Phys. 113(7), 074105 (2013). DOI: 10.1063/1.4790317.
  • I. P. Raevski et al., Studies of ferroelectric and magnetic phase transitions in multiferroic PbFe0.5Ta0.5O3 – PbTiO3 solid solution ceramics, J. Mater. Sci. 49(18), 6459 (2014). DOI: 10.1007/s10853-014-8376-z.
  • V. V. Laguta et al., Room-temperature paramagnetoelectric effect in magnetoelectric multiferroics Pb(Fe1/2Nb1/2)O3 and its solid solution with PbTiO3, J. Mater. Sci. 51(11), 5330 (2016). DOI: 10.1007/s10853-016-9836-4.
  • E. I. Sitalo et al., Dielectric and piezoelectric properties of PbFe1/2Nb1/2O3–PbTiO3 ceramics from the morphotropic phase boundary compositional range, IEEE Trans. Ultrason. Ferroelect. Freq. Contr. 58(9), 1914 (2011). DOI: 10.1109/TUFFC.2011.2031.
  • V. V. Laguta et al., Magnetoelectric effect in antiferromagnetic multiferroic Pb(Fe1/2Nb1/2)O3 and its solid solutions with PbTiO3, Phys. Rev. B. 95, 014207 (2017).
  • I. P. Raevski et al., Studies of ferroelectric and magnetic phase transitions in Pb1-xAxFe1/2Nb1/2O3 (A-Ca, Ba) solid solutions, Ferroelectrics. 398(1), 16 (2010). DOI: 10.1080/00150193.2010.489807.
  • C. G. F. Stenger, F. L. Scholten, and A. J. Burggraaf, Ordering and diffuse phase transitions in Pb(Sc0.5Ta0.5)O3 ceramics, Solid State Commun. 32(11), 989 (1979). DOI: 10.1016/0038-1098(79)90812-3.
  • N. Setter, and L. E. Cross, The role of B-site cation disorder in diffuse phase transition behavior of perovskite ferroelectrics, J. Appl. Phys. 51(8), 4356 (1980). DOI: 10.1063/1.328296.
  • V. A. Shuvaeva et al., The local structure of mixed-ion perovskites, J. Phys: Condens. Matter. 15, 2413 (2003). DOI: 10.1088/0953-8984/15/14/317.
  • P. K. Davies et al., Crystal chemistry of complex perovskites: new cation-ordered dielectric oxides, Annu. Rev. Mater. Res. 38(1), 369 (2008). DOI: 10.1146/annurev.matsci.37.052506.084356.
  • A. A. Bokov, N. P. Protsenko, and Z.-G. Ye, Relationship between ionicity, ionic radii and order/disorder in complex perovskites, J. Phys. Chem. Sol. 61(9), 1519 (2000). DOI: 10.1016/S0022-3697(00)00004-4.
  • A. A. Bokov, I. P. Rayevsky, V. V. Neprin, and V. G. Smotrakov, Investigation of phase transitions in Pb(In0.5Ta0.5)O3 crystals, Ferroelectrics. 124(1), 271 (1991). DOI: 10.1080/00150199108209450.
  • A. Kania, and M. Pawelczyk, Order-disorder aspects in PbIn0.5Ta0.5O3 crystals, Ferroelectrics. 124(1), 261 (1991). DOI: 10.1080/00150199108209448.
  • I. P. Raevski et al., Random-site cation ordering and dielectric properties of PbMg1/3Nb2/3O3-PbSc1/2Nb1/2O3, Int. Ferroelectrics. 53, 475 (2003). DOI: 10.1080/714040696.
  • I. P. Raevski et al., X-ray and dielectric studies of liquid-phase sintered PbB3+1/2B5+1/2O3 ceramics with differing degree of compositional ordering, Ferroelectrics. 235(1), 205 (1999). DOI: 10.1080/00150199908214879.
  • X. S. Gao et al., B-site disordering in Pb(Sc1/2Ta1/2)O3 by mechanical activation, Appl. Phys. Lett. 82(26), 4773 (2003). DOI: 10.1063/1.1581384.
  • X. Gao, J. Xue, and J. Wang, Mechanical activation-induced sequential combination, morphotropic segregation and order/disorder transformation in Pb-based relaxors, Mater. Sci. Eng. B. 99, 63 (2003). DOI: 10.1016/S0921-5107(02)00566-4.
  • X. S. Gao, J. M. Xue, and J. Wang, The B-site order-disorder transformation in Pb(Sc1/2Ta1/2)O3 triggered by mechanical activation, J. Mater. Sci. 39, 5267 (2004). DOI: 10.1023/B:JMSC.0000039225.87405.62.
  • H. Uršič et al., Unusual structural-disorder stability of mechanochemically derived-Pb(Sc0.5Nb0.5)O3, J. Mater. Chem. C. 3(39), 10309 (2015). DOI: 10.1039/C5TC02205C.
  • I. P. Raevski et al., Control of the degree of compositional ordering of Pb2YbМO6 (M - Nb, Ta) perovskites by means of mechanical activation, Ferroelectrics. 525(1), 54 (2018). DOI: 10.1080/00150193.2018.1432928.
  • A. A. Gusev et al., Dielectric and Mossbauer studies of Pb(Fe1/2Ta1/2)O3 multiferroic ceramics sintered from mechanoactivated powders, Ferroelectrics. 475(1), 41 (2015). DOI: 10.1080/00150193.2015.995007.
  • N. Yasuda, H. Inagaki, and S. Imamura, Dielectric properties of perovskite lead indium niobate and tantalate prepared by fast firing technique, Jpn. J. Appl. Phys. 31(Part 2, No. 5A), L574 (1992). DOI: 10.1143/JJAP.31.L574.
  • E. F. Alberta, and A. S. Bhalla, Preparation of phase-pure perovskite lead-indium niobate ceramics, Mater. Lett. 29(1–3), 127 (1996). DOI: 10.1016/S0167-577X(96)00138-3.
  • A. S. Divya, and V. Kumar, Influence of Fe3+ substitution on dielectric and ferroelectric characteristics of lead indium niobate, J. Alloys Compnds. 637, 426 (2015). DOI: 10.1016/j.jallcom.2015.03.012.
  • Z. Branković et al., Mechanochemical synthesis of lead magnesium niobate ceramics in iron media, Metall. And Mat. Trans. A. 39A, 875 (2008). DOI: 10.1007/s11661-007-9463-4.
  • C. A. Randall, and A. S. Bhalla, Nanostructural-property relations in complex lead perovskites, Jpn. J. Appl. Phys. 29(Part 1, No. 2), 327 (1990). DOI: 10.1143/JJAP.29.327.
  • S. Prosandeev, and L. Bellaiche, Effects of atomic short-range order on properties of the PbMg1/3Nb2/3O3 relaxor ferroelectric, Phys. Rev. B. 94, 180102(R) (2016).
  • D. Viehland, S. Jang, L. E. Cross, and M. Wuttig, The dielectric relaxation of lead magnesium niobate relaxor ferroelectrics, Philos. Mag. B. 64(3), 335 (1991). DOI: 10.1080/13642819108207624.
  • I. P. Raevski et al., Spontaneous phase transition from relaxor to macrodomain ferroelectric state in single-crystal PbSc0.5Nb0.5O3 – BaSc0.5Nb0.5O3 solid solutions, Phys. Solid State. 42, 161 (2000). DOI: 10.1134/1.1131185.
  • F. Chu, I. M. Reaney, and N. Setter, Investigation of relaxors that transform spontaneously into ferroelectrics, Ferroelectrics. 151(1), 343 (1994). DOI: 10.1080/00150199408244759.
  • I. P. Raevski et al., NaNbO3–based relaxor, Ferroelectrics. 299(1), 95 (2004). DOI: 10.1080/00150190490429231.
  • A. A. Bokov, and Z.-G. Ye, Dielectric relaxation in relaxor ferroelectrics, J. Adv. Dielect. 02(02), 1241010 (2012). DOI: 10.1142/S2010135X1241010X.
  • C. Ang, Z. Yu, and L. E. Cross, Oxygen-vacancy-related low-frequency dielectric relaxation and electrical conduction in Bi: SrTiO3, Phys. Rev. B. 62(1), 228 (2000). DOI: 10.1103/PhysRevB.62.228.
  • M. Puri, S. Bahel, and S. B. Narang, Dielectric properties of Sn-substituted lead calcium iron niobate, J. Mater. Sci: Mater. Electron. 27, 3653 (2016). DOI: 10.1007/s10854-015-4204-8.
  • S. A. Prosandeev et al., Study of intrinsic point defects in oxides of the perovskite family. 1. Theory, J. Phys.: Condens. Matter. 8, 6705 (1996). DOI: 10.1088/0953-8984/8/36/021.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.