100
Views
6
CrossRef citations to date
0
Altmetric
Articles

Magnetic phase transitions in solid solutions of Fe-containing perovskite multiferroics

, , , , , , , , & show all
Pages 36-44 | Received 29 Aug 2018, Accepted 26 Nov 2018, Published online: 09 Jul 2019

References

  • D. I. Khomskii, Multiferroics: different ways to combine magnetism and ferroelectricity, J. Magn. Magn. Mater. 306(1), 1 (2006). DOI: 10.1016/j.jmmm.2006.01.238.
  • G. Catalan, and J. F. Scott, Physics and applications of bismuth ferrite, Adv. Mater. 21(24), 2463 (2009). DOI: 10.1002/adma.200802849.
  • V. V. Laguta et al., Magnetoelectric effect in antiferromagnetic multiferroic Pb(Fe1/2Nb1/2)O3 and its solid solutions with PbTiO3, Phys. Rev. B. 95, 014207 (2017).
  • D. A. Sanchez et al., Room-temperature single phase multiferroic magnetoelectrics: Pb(Fe,M)x(Zr,Ti)(1−x)O3 [M = Ta, Nb], J. Appl. Phys. 113(7), 074105 (2013). DOI: 10.1063/1.4790317.
  • I. P. Raevski et al., Studies of ferroelectric and magnetic phase transitions in multiferroic PbFe0.5Ta0.5O3 – PbTiO3 solid solution ceramics, J. Mater. Sci. 49(18), 6459 (2014). DOI: 10.1007/s10853-014-8376-z.
  • P. Amonpattaratkit, P. Jantaratana, and S. Ananta, Influences of PZT addition on phase formation and magnetic properties of perovskite Pb(Fe0.5Nb0.5)O3 -based ceramics, J. Magn. Magn. Mater. 389, 95 (2015). DOI: 10.1016/j.jmmm.2015.04.053.
  • M. D. Glinchuk, E. A. Eliseev, and A. N. Morozovska, Novel room temperature multiferroics on the base of single-phase nanostructured perovskites, J. Appl. Phys. 116(5), 054101 (2014). DOI: 10.1063/1.4891459.
  • M. A. Gilleo, Superexchange interaction in ferromagnetic garnets and spinels which contain randomly incomplete linkages, J. Phys. Chem. Sol. 13(1-2), 33 (1960). DOI: 10.1016/0022-3697(60)90124-4.
  • J. B. Goodenough, Magnetism and Chemical Bond (Interscience Publisher (a division of John Wiley & Sons), NY – London, 1963).
  • I. P. Raevski et al., Studies of magnetic and ferroelectric phase transitions in BiFeO3-NaNbO3 solid solution ceramics, Gfer. 371(1), 113 (2008). DOI: 10.1080/00150190802397767.
  • I. P. Raevski et al., The effect of Cr substitution for Fe on the structure and magnetic properties of BiFeO3 multiferroic, Ferroelectrics. 525(1), 1 (2018). DOI: 10.1080/00150193.2018.1432844.
  • F. Chang et al., Effect of Cr substitution on the structure and electrical properties of BiFeO3 ceramics, J. Phys. D: Appl. Phys. 40(24), 7799 (2007). DOI: 10.1088/0022-3727/40/24/031.
  • D. D. Khalyavin et al., Polar and antipolar polymorphs of metastable perovskite BiFe0.5Sc0.5O3, Phys. Rev. B. 89, 174414 (2014).
  • I. P. Raevski et al., Mössbauer studies of PbFe0.5Nb0.5O3 - PbFe0.5Sb0.5O3 multiferroic solid solutions, Ferroelectrics. 444(1), 47 (2013). DOI: 10.1080/00150193.2013.785914.
  • V. V. Laguta et al., Superspin glass phase and hierarchy of interactions in multiferroic PbFe1/2Sb1/2O3: an analog of ferroelectric relaxors? New J. Phys. 16, 11304 (2014).
  • S. Nomura, H. Takabayashi, and T. Nakagawa, Dielectric and magnetic properties of Pb(Fe1/2Ta1/2)O3, Jpn. J. Appl. Phys. 7(6), 600 (1968). DOI: 10.1143/JJAP.7.600.
  • A. A. Gusev et al., Electron microscopy, X-ray diffraction and Mossbauer studies of PbFe0.5Nb0.5O3, PbFe0.5Ta0.5O3 and BaFe0.5Nb0.5O3 ceramics sintered from mechanoactivated nanopowders, Ferroelectrics. 496(1), 231 (2016). DOI: 10.1080/00150193.2016.1157742.
  • W. Peng et al., Spin-lattice coupling in multiferroic Pb(Fe1/2Nb1/2)O3 thin films, Appl. Phys. Lett. 94(1), 012509 (2009). DOI: 10.1063/1.3067872.
  • I. P. Raevski et al., Dielectric and Mossbauer studies of perovskite multiferroics, Ferroelectrics. 373(1), 121 (2008). DOI: 10.1080/00150190802408945.
  • J. A. Eiras et al., Anelastic and dielectric characterization of Pb(Fe0.50Nb0.50)O3 multiferroic, Ferroelectrics. 380(1), 69 (2009). DOI: 10.1080/00150190902873220.
  • L. I. Shvorneva, and Y. N. Venevtsev, Perovskites with ferroelectromagnetic properties, Sov. Phys. JETP. 22, 722 (1965).
  • A. A. Gusev et al., Dielectric and Mossbauer studies of Pb(Fe1/2Ta1/2)O3 multiferroic ceramics sintered from mechanoactivated powders, Ferroelectrics. 475(1), 41 (2015). DOI: 10.1080/00150193.2015.995007.
  • M. Eibschütz, S. Shtrikman, and D. Treves, Mössbauer studies of Fe57 in orthoferrites, Phys. Rev. 156(2), 562 (1967). DOI: 10.1103/PhysRev.156.562.
  • I. P. Raevski et al., Studies of ferroelectric and magnetic phase transitions in Pb1-xAxFe1/2Nb1/2O3 (A-Ca, Ba) solid solutions, Ferroelectrics. 398(1), 16 (2010). DOI: 10.1080/00150193.2010.489807.
  • R. De Sousa, M. Allen, and M. Cazayous, Theory of spin-orbit enhanced electric-field control of magnetism in multiferroic BiFeO3, Phys. Rev. Lett. 110, 267202 (2013).
  • V. V. Laguta et al., Room-temperature paramagnetoelectric effect in magnetoelectric multiferroics Pb(Fe1/2Nb1/2)O3 and its solid solution with PbTiO3, J. Mater. Sci. 51(11), 5330 (2016). DOI: 10.1007/s10853-016-9836-4.
  • A. Levstik, C. Filipič, and J. Holc, The magnetoelectric coefficients of Pb(Fe1/2Nb1/2)O3 and 0.8Pb(Fe1/2Nb1/2)O3 − 0.2Pb(Mg1/2W1/2)O3, J. Appl. Phys. 103(6), 066106 (2008). DOI: 10.1063/1.2896639.
  • D. Bochenek, and P. Guzdek, Ferroelectric and magnetic properties of ferroelectromagnetic PbFe1/2Nb1/2O3 type ceramics, J. Magn. Magn. Mater. 323(3-4), 369 (2011). DOI: 10.1016/j.jmmm.2010.09.046.
  • E. I. Sitalo et al., Dielectric and piezoelectric properties of PbFe1/2Nb1/2O3-PbTiO3 ceramics from the morphotropic phase boundary compositional range, IEEE Trans. Ultrason. Ferroelect. Freq. Contr. 58(9), 1914 (1918). (DOI: 10.1109/TUFFC.2011.2031.
  • A. T. Kozakov et al., Phase transitions, dielectric properties and valence of magnetic ions in PbFe0.5-xCrxNb0.5O3 multiferroic ceramics, J. Mater. Sci. 52(17), 10140 (2017). DOI: 10.1007/s10853-017-1234-z.
  • A. Kania, E. Talik, and M. Kruczek, X-Ray Photoelectron spectroscopy, magnetic and dielectric studies of PbFe0,5Nb0,5O3 single crystals, Ferroelectrics. 391(1), 114 (2009). DOI: 10.1080/00150190903001805.
  • W. Kleemann, V. V. Shvartsman, P. Borisov, and A. Kania, Coexistence of antiferromagnetic and spin cluster glass order in the magnetoelectric relaxor multiferroic PbFe0,5Nb0,5O3, Phys. Rev. Lett. 105, 257202 (2010).
  • S. P. Singh et al., Ferroic transitions in the multiferroic (1 − x)Pb(Fe1/2Nb1/2)O3–xPbTiO3 system and its phase diagram, Acta Mater. 58(16), 5381 (2010). DOI: 10.1016/j.actamat.2010.06.014.
  • Y. N. Zakharov et al., Field-induced enhancement of pyroelectric response of PbMg1/3Nb2/3O3-PbTiO3 and PbFe1/2Nb1/2O3-PbTiO3 solid solution ceramics, Ferroelectrics. 399(1), 20 (2010). DOI: 10.1080/00150193.2010.489850.
  • S. I. Raevskaya et al., Critical nature of the giant field-induced pyroelectric response in PbMg1/3Nb2/3O3-PbTiO3 single crystals, Appl. Phys. Lett. 93(4), 042903 (2008). DOI: 10.1063/1.2966147.
  • E. Dul'kin, I. P. Raevski, and S. M. Emel'yanov, Acoustic emission and thermal expansion of Pb(Mg1/3Nb2/3)O3 and Pb(Mg1/3Nb2/3)O3–PbTiO3 crystals, Phys. Solid State. 45, 158 (2003).
  • V. S. Sai Sunder, and A. M. Umarji, Thermal expansion studies in the lead iron niobate - lead titanate system, Mater. Res. Bull. 30(4), 427 (1995). DOI: 10.1016/0025-5408(95)00016-X.
  • I. P. Raevski et al., Comparative studies of ferroelectric and magnetic phase transitions in Pb(Fe1/2Nb1/2)O3 –PbMO3 (M-Ti, Zr) multiferroic solid solutions, Ferroelectrics. 475(1), 20 (2015). DOI: 10.1080/00150193.2015.994989.
  • A. Marbeuf, J. Bavez, and G. Demazeaw, Nature des transitions dans le système PbZrO3–PbFe1/2Nb1/2O3, Rev. Chim. Miner. 11, 198 (1974).
  • B. P. Blazhievskii et al., Ferroelectric properties of the lead zirconate-ferroniobate ceramics, Inorg. Mater. 22, 418 (1986).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.