110
Views
4
CrossRef citations to date
0
Altmetric
Articles

Electrically controllable diffraction of light on periodic domain structures in ferroelectric crystals

, , , , &
Pages 58-63 | Received 29 Aug 2018, Accepted 26 Nov 2018, Published online: 09 Jul 2019

References

  • G. Catalan, J. Seidel, R. Ramesh, and J. F. Scott, Domain wall nanoelectronics. Rev. Mod. Phys. 84(1), 119 (2012). DOI: 10.1103/RevModPhys.84.119.
  • P. Ferrari, S. Grilli, and P. De Natale (Eds), Ferroelectric Crystals for Photonic Applications (Springer-Verlag, Berlin/Heidelberg, 2009).
  • J. E. Toney, Lithium Niobate Photonics (Artech House, Norwood, MA, 2015 ): .
  • T. Volk, and M. Wöhlecke, Lithium Niobate: Defects, Photorefraction and Ferroelectric Switching (Springer-Verlag, Berlin/Heidelberg, 2008).
  • V. Y. Shur, A. R. Akhmatkhanov, and I. S. Baturin, Micro- and nano-domain engineering in lithium niobate. Appl. Phys. Rev. 2 (4), 040604 (2015). DOI: 10.1063/1.4928591.
  • A. C. G. Nutt, V. Gopalan, and M. C. Gupta, Domain inversion in LiNbO3 using direct electron-beam writing. Appl. Phys. Lett. 60(23), 2828 (1992). DOI: 10.1063/1.106837.
  • L. S. Kokhanchik et al., Periodic domain structures generated by an electron beam in LiNbO3 plates and Y-orientated Ti:LiNbO3 planar waveguides. Solid State Phys. 52, 1602 (2010).
  • T. R. Volk et al., Microdomain patterns recorded by an electron beam in He-implanted optical waveguides on X-cut LiNbO3 crystals. J. Lightwave Technol. 33 (23), 4761 (2015)., DOI: 10.1109/JLT.2015.2480496.
  • T. R. Volk et al., Domain formation on the nonpolar lithium niobate surfaces under electron-beam irradiation: a review. J. Adv. Dielect. 8 (2), 1830001 (2018). DOI: 10.1142/S2010135X18300013.
  • V. Y. Shur, D. S. Chezganov, A. R. Akhmatkhanov, and D. K. Kuznetsov, Domain patterning by electron beam of MgO doped lithium niobate covered by resist. Appl. Phys. Lett. 106 (23), 232902 (2015).
  • M. Yamada, M. Saitoh, and H. Ooki, Electric‐field induced cylindrical lens, switching and deflection devices composed of the inverted domains in LiNbO3 crystals. Appl. Phys. Lett. 69 (24), 3659 (1996). DOI: 10.1063/1.117015.
  • J. A. Abernethey, C. B. E. Gawith, R. W. Eason, and P. G. R. Smith, Demonstration and optical characteristics of electro-optic Bragg modulators in periodically poled lithium niobate in the near-infrared. Appl. Phys. Lett. 81, 2514 (2002). DOI: 10.1063/1.1510964.
  • I. Mhaouech et al., Low drive voltage electro-optic Bragg deflector using a periodically poled lithium niobate planar waveguide. Opt. Lett. 41 (18), 4174 (2016)., DOI: 10.1364/OL.41.004174.
  • H. Gnewuch et al., Nanosecond response of bulk-optical Bragg-diffraction modulator based on periodically poled LiNbO3. IEEE Photon. Technol. Lett. 10 (12), 1730 (1998)., DOI: 10.1109/68.730484.
  • M. Yamada, Electrically induced Bragg-diffraction grating composed of periodically inverted domains in lithium niobate crystals and its application devices. Rev. Sci. Instrum. 71 (11), 4010 (2000). DOI: 10.1063/1.1319341.
  • A. L. Aleksandrovskii, O. A. Gliko, I. I. Naumova, and V. I. Pryalkin, Linear and nonlinear diffraction gratings in lithium niobate single crystals with periodic domain structure. Quantum Electron. 26 (7), 641 (1996). DOI: 10.1070/QE1996v026n07ABEH000743.
  • S. M. Shandarov et al., Collinear and isotropic diffraction of laser beam and incoherent light on periodically poled domain structures in lithium niobate. Ferroelectrics. 496 (1), 134 (2016)., DOI: 10.1080/00150193.2016.1157439.
  • S. M. Shandarov et al., The linear diffraction of light waves on periodically poled domain structure in lithium niobate crystal. Ferroelectrics. 508 (1), 49 (2017)., DOI: 10.1080/00150193.2017.1287515.
  • S. M. Shandarov et al., Diffraction and interference methods of research of periodically poled domain structures in ferroelectric lithium niobate crystals, Holography. Science and practice. XIV International Conference HOLOEXPO 2017: Abstracts of reports. LLC “Micro and Nanogolographic Systems” 203-209 (2017).
  • H. Kogelnik, Coupled wave theory for thick hologram gratings. Bell Syst. Tech. J. 48 (9), 2909 (1969). DOI: 10.1002/j.1538-7305.1969.tb01198.x.
  • D. A. Scrymgeour et al., Phenomenological theory of a single domain wall in uniaxial trigonal ferroelectrics: Lithium niobate and lithium tantalite. Phys. Rev. B. 71, 184110 (2005).
  • V. G. Dmitriev, G. G. Gurdzanyan, and D. N. Nikogosyan, Handbook of Nonlinear Optical Crystals (Springer-Verlag, Berlin, 1991).
  • E. H. Turner, High-frequency electro-optic coefficients of lithium niobate. Appl. Phys. Lett. 8 (11), 303 (1966).
  • L. P. Avakyants, D. F. Kiselev, and N. N. Shchitov, Photoelasticity of LiNbO3. Sov. Phys. Solid State. 18, 899 (1976).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.