99
Views
8
CrossRef citations to date
0
Altmetric
Articles

Self-organized domain formation by moving the biased SPM tip

, , , &
Pages 70-76 | Received 29 Aug 2018, Accepted 26 Nov 2018, Published online: 09 Jul 2019

References

  • V. Ya. Shur, Nano- and microdomain engineering of lithium niobate and lithium tantalate for piezoelectric applications, in Advanced Piezoelectric Materials (Woodhead Publishing in Materials; Woodhead Publishing, 2017), 235–270.
  • V. Ya. Shur, A. R. Akhmatkhanov, and I. S. Baturin, Micro- and nano-domain engineering in lithium niobate, Appl. Phys. Rev. 2, 040604 (2015). DOI: 10.1063/1.4928591.
  • V. Ya. Shur et al., Recent achievements in domain engineering in lithium niobate and lithium tantalate, Ferroelectrics 257, 191–202 (2001). DOI: 10.1080/00150190108016300.
  • V. Ya. Shur et al., Regular ferroelectric domain array in lithium niobate crystals for nonlinear optic applications, Ferroelectrics 236, 129–144 (2000). DOI: 10.1080/00150190008016047.
  • A. I. Lobov et al., Field induced evolution of regular and random 2D domain structures and shape of isolated domains in LiNbO3 and LiTaO3, Ferroelectrics 341, 109–144 (2006). DOI: 10.1080/00150190600896994.
  • V. Ya. Shur et al., Domain shape in congruent and stoichiometric lithium tantalate, Ferroelectrics 269, 195–200 (2002). DOI: 10.1080/00150190211168.
  • D. A. Scrymgeour, Applications of domain engineering in ferroelectrics for photonic applications, in Ferroelectric Crystals for Photonic Applications, ed. by P. Ferraro, S. Grilli, P. De Natale (Springer, Berlin, 2014), 385–399.
  • L. Arizmendi, Photonic applications of lithium niobate crystals, Phys. Status Solidi 201, 253–283 (2004). DOI: 10.1002/pssa.200303911.
  • A. Gruverman and A. Kholkin, Nanoscale ferroelectrics: Processing, characterization and future trends, Reports Prog. Phys. 69, 2443–2474 (2006). DOI: 10.1088/0034-4885/69/8/R04.
  • O. Kolosov, A. Gruverman, J. Hatano, K. Takahashi, and H. Tokumoto, Nanoscale visualization and control of ferroelectric domains by atomic force microscopy, Phys. Rev. Lett. 74, 4309–4312 (1995). DOI: 10.1103/PhysRevLett.74.4309.
  • S. V. Kalinin, A. N. Morozovska, L. Q. Chen, and B. J. Rodriguez, Local polarization dynamics in ferroelectric materials, Rep. Prog. Phys. 73, 056502 (2010). DOI: 10.1088/0034-4885/73/5/056502.
  • V. Ya. Shur and P. S. Zelenovskiy, Micro- and nanodomain imaging in uniaxial ferroelectrics: Joint application of optical, confocal Raman, and piezoelectric force microscopy, J. Appl. Phys. 116, 066802 (2014). DOI: 10.1063/1.4891397.
  • V. G. Zalessky and S. O. Fregatov, Micrometer-scale ferroelectric domain formation and injection of space charge in Y-cut LiNbO3 crystals, Phys. B. Condens. Matter 371, 158–162 (2006). DOI: 10.1016/j.physb.2005.10.097.
  • A. V. Ievlev et al., Symmetry breaking and electrical frustration during tip-induced polarization switching in the nonpolar cut of lithium niobate single crystals, ACS Nano 9, 769–777 (2015). DOI: 10.1021/nn506268g.
  • D. O. Alikin et al., Tip-induced domain growth on the non-polar cuts of lithium niobate single-crystals, Appl. Phys. Lett. 106, 182902 (2015). DOI: 10.1063/1.4919872.
  • A. P. Turygin et al., The formation of self-organized domain structures at non-polar cuts of lithium niobate as a result of local switching by an SPM tip, Materials 10, 1143 (2017). DOI: 10.3390/ma10101143.
  • T. R. Volk et al., Creation of domains and domain patterns on the nonpolar surface of SrxBa1-XNb2O6 Crystals by atomic force microscopy, JETP Lett. 97, 483–489 (2013). DOI: 10.1134/S0021364013080146.
  • A. V. Ievlev et al., Intermittency, quasiperiodicity and chaos in probe-induced ferroelectric domain switching, Nat. Phys. 10, 59–66 (2013). DOI: 10.1038/nphys2796.
  • Y. Cho et al., Tbit/inch ferroelectric data storage based on scanning nonlinear dielectric microscopy, Appl. Phys. Lett. 81, 4401–4403 (2002). DOI: 10.1063/1.1526916.
  • J. F. Scott, Applications of modern ferroelectrics, Science 315, 954–959 (2007). DOI: 10.1126/science.1129564.
  • A. P. Turygin et al., Self-organized formation of quasi-regular ferroelectric nanodomain structure on the nonpolar cuts by grounded SPM tip, ACS App. Mater. Interfaces 10, 36211–36217 (2018). DOI: 10.1021/acsami.8b10220.
  • H. Ma, G. Yuan, T. Wu, Y. Wang, and J.-M. Liu, Self-organized ferroelectric domains controlled by a constant bias from the atomic force microscopy tip, ACS App. Mater. Interfaces 10, 40911–40917 (2018). DOI: 10.1021/acsami.8b13982.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.