98
Views
3
CrossRef citations to date
0
Altmetric
Articles

E-beam domain patterning in thin plates of MgO-doped LiNbO3

, , , , , & show all
Pages 85-92 | Received 29 Aug 2018, Accepted 26 Nov 2018, Published online: 09 Jul 2019

References

  • V. Ya. Shur, A. R. Akhmatkhanov, and I. S. Baturin, Micro- and nano-domain engineering in lithium niobate, Appl. Phys. Rev. 2, 040604 (2015). DOI: 10.1063/1.4928591.
  • J. A. Armstrong, N. Bloembergen, J. Ducuing, and P. S. Pershan, Interactions between light waves in a nonlinear dielectric, Phys. Rev. 127, 1918–1939 (1962). DOI: 10.1103/PhysRev.127.1918.
  • R. L. Byer, Quasi-phasematched nonlinear interactions and devices, J. Nonlinear Opt. Phys. Mater. 6, 549–592 (1997). DOI: 10.1142/S021886359700040X.
  • T. Volk and M. Wöhlecke, Lithium niobate: defects, photorefraction and ferroelectric switching (Springer, Berlin, 2008).
  • R. G. Batchko et al., Backswitch poling in lithium niobate for high-fidelity domain patterning and efficient blue light generation, Appl. Phys. Lett. 75, 1673–1675 (1999). DOI: 10.1063/1.124787.
  • P. W. Haycock and P. D. Townsend, A method of poling LiNbO3 and LiTaO3 below Tc, Appl. Phys. Lett. 48, 698–700 (1986). DOI: 10.1063/1.96747.
  • H. Ito, C. Takyu, and H. Inaba, Fabrication of periodic domain grating in LiNbO3 by electron beam writing for application of nonlinear optical processes, Electron. Lett. 27, 1221–1222 (1991). DOI: 10.1049/el:19910766.
  • A. C. G. Nutt, V. Gopalan, and M. C. Gupta, Domain inversion in LiNbO3 using direct electron‐beam writing, Appl. Phys. Lett. 60, 2828–2830 (1992). DOI: 10.1063/1.106837.
  • S. Kurimura, I. Shimoya, and Y. Uesu, Domain inversion by an electron-beam-induced electric field in MgO:LiNbO3, LiNbO3 and LiTaO3, Jpn. J. Appl. Phys. 35, L31–L33 (1996). DOI: 10.1143/JJAP.35.L31.
  • J. He et al., Two-dimensional structures of ferroelectric domain inversion in LiNbO3 by direct electron beam lithography, J. Appl. Phys. 93, 9943–9946 (2003). DOI: 10.1063/1.1575918.
  • L. S. Kokhanchik et al., Periodic domain structures formed under electron-beam irradiation in LiNbO3 plates and Ti:LiNbO3 planar waveguides of the Y cut, Phys. Solid State 52, 1722–1730 (2010). DOI: 10.1134/S106378341008024X.
  • Y. Glickman et al., Electron-beam-induced domain poling in LiNbO3 for two-dimensional nonlinear frequency conversion, Appl. Phys. Lett. 88, 011103 (2006). DOI: 10.1063/1.2159089.
  • X. Li et al., Domain patterning in LiNbO3 and LiTaO3 by focused electron beam, J. Cryst. Growth 292, 324–327 (2006). DOI: 10.1016/j.jcrysgro.2006.04.028.
  • X. Li et al., Electron-beam domain writing in stoichiometric LiTaO3 single crystal by utilizing resist layer, Jpn. J. Appl. Phys. 45, L399–L402 (2006). DOI: 10.1143/JJAP.45.L399.
  • V. Ya. Shur et al., Domain patterning by electron beam of MgO doped lithium niobate covered by resist, Appl. Phys. Lett. 106, 232902 (2015). DOI: 10.1063/1.4922372.
  • D. S. Chezganov et al., Periodic domain patterning by electron beam of proton exchanged waveguides in lithium niobate, Appl. Phys. Lett. 108, 192903 (2016). DOI: 10.1063/1.4949360.
  • N. Courjal et al., High aspect ratio lithium niobate ridge waveguides fabricated by optical grade dicing, J. Phys. D 44, 305101 (2011). DOI: 10.1088/0022-3727/44/30/305101.
  • M. Chauvet et al., High efficiency frequency doubling in fully diced LiNbO3 ridge waveguides on silicon, J. Opt. 18, 085503 (2016). DOI: 10.1088/2040-8978/18/8/085503.
  • P. Rabiei and W. H. Steier, Lithium niobate ridge waveguides and modulators fabricated using smart guide, Appl. Phys. Lett. 86, 161115 (2005). DOI: 10.1063/1.1906311.
  • I. P. Kaminow et al., Lithium niobate ridge waveguide modulator, Appl. Phys. Lett. 24, 622–624 (1974). DOI: 10.1063/1.1655079.
  • A. Boes et al., Status and potential of lithium niobate on insulator (LNOI) for photonic integrated circuits, Laser Photonics Rev. 12, 1700256 (2018). DOI: 10.1002/lpor.201700256.
  • E. Soergel, Piezoresponse force microscopy (PFM), J. Phys. D 44, 464003 (2011). DOI: 10.1088/0022-3727/44/46/464003.
  • J. F. Ihlefeld et al., Domain imaging in ferroelectric thin films via channeling-contrast backscattered electron microscopy, J. Mater. Sci. 52, 1071–1081 (2017). DOI: 10.1007/s10853-016-0402-x.
  • E. O. Vlasov et al., Domain structure imaging in PMN-PT crystals using channelling-contrast backscattered electron microscopy, IOP Conf. Ser. Mater. Sci. Eng. 443, 012038 (2018). DOI: 10.1088/1757-899X/443/1/012038.
  • R. Hammoum et al., Characterization of PPLN-microstructures by means of Raman spectroscopy, Appl. Phys. A 91, 65–67 (2008). DOI: 10.1007/s00339-007-4356-3.
  • P. S. Zelenovskiy et al., Raman visualization of micro- and nanoscale domain structures in lithium niobate, Appl. Phys. A 99, 741–744 (2010). DOI: 10.1007/s00339-010-5621-4.
  • V. Ya. Shur and P. S. Zelenovskiy, Micro- and nanodomain imaging in uniaxial ferroelectrics: Joint application of optical, confocal Raman, and piezoelectric force microscopy, J. Appl. Phys. 116, 066802 (2014). DOI: 10.1063/1.4891397.
  • D. S. Chezganov et al., Electron beam domain patterning of MgO-doped lithium niobate crystals covered by resist layer, Ferroelectrics 476, 117–126 (2015). DOI: 10.1080/00150193.2015.998909.
  • V. Ya. Shur, Kinetics of ferroelectric domains: Application of general approach to LiNbO3 and LiTaO3, J. Mater. Sci. 41, 199–210 (2006). DOI: 10.1007/s10853-005-6065-7.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.