169
Views
2
CrossRef citations to date
0
Altmetric
Articles

Effect of ferroelectric domains on electric properties of single layer graphene

, , , , , & show all
Pages 93-101 | Received 29 Aug 2018, Accepted 26 Nov 2018, Published online: 09 Jul 2019

References

  • W. Jieab and J. Hao, Graphene-based hybrid structures combined with functional materials of ferroelectrics and semiconductors, Nanoscale 6, 6346 (2014). DOI: 10.1039/C3NR06918D.
  • Y. Zheng et al., Graphene field-effect transistors with ferroelectric gating, Phys. Rev. Lett. 105, 166602 (2010). DOI: 10.1103/PhysRevLett.105.166602.
  • Z. Xiao et al., Ferroelectric domain patterning controlled Schottky junction state in monolayer MoS2, Phys. Rev. Lett. 118, 236801 (2017). DOI: 10.1103/PhysRevLett.118.236801.
  • W. Y. Kim et al., Graphene-ferroelectric metadevices for nonvolatile memory and reconfigurable logic-gate operations, Nat. Commun. 7, 10429 (2016). DOI: 10.1038/ncomms10429.
  • X. Hong et al., Unusual resistance hysteresis in n-layer graphene field effect transistors fabricated on ferroelectric Pb(Zr0.2Ti0.8)O3, Appl. Phys. Lett. 97, 033114 (2010). DOI: 10.1063/1.3467450.
  • A. Rajapitamahuni et al., Examining graphene field effect sensors for ferroelectric thin film studies, Nano Lett. 13, 4374 (2013). DOI: 10.1021/nl402204t.
  • M. Humed Yusuf et al., Extrinsic and intrinsic charge trapping at the graphene/ferroelectric interface, Nano Lett. 14, 5437 (2014). DOI: 10.1021/nl502669v.
  • J. H. Hinnefeld et al., Single gate p-n junctions in graphene-ferroelectric devices, Appl. Phys. Lett. 108, 203109 (2016). DOI: 10.1063/1.4950975.
  • C. Baeumer et al., Ferroelectrically driven spatial carrier density modulation in graphene, Nat. Commun. 6, 6136 (2015). DOI: 10.1038/ncomms7136.
  • A. N. Morozovska, E. A. Eliseev, and M. V. Strikha, Ballistic conductivity of graphene channel with p-n junction at ferroelectric domain wall, Appl. Phys. Lett. 108, 232902 (2016). DOI: 10.1063/1.4953226.
  • A. N. Morozovska and M. V. Strikha, Pyroelectric origin of the carrier density modulation at graphene-ferroelectric interface, J. Appl. Phys. 114, 014101 (2013). DOI: 10.1063/1.4812244.
  • A. N. Morozovska et al., Ferroelectric domain triggers the charge modulation in semiconductors, J. Appl. Phys. 116, 066817 (2014). DOI: 10.1063/1.4891310.
  • M. V. Strikha and A. N. Morozovska, Limits for the graphene on ferroelectric domain wall p-n-junction rectifier for different regimes of current, J. Appl. Phys. 120, 214101 (2016). DOI: 10.1063/1.4968797.
  • J. Ding et al., Structure and electronic properties of graphene on ferroelectric LiNbO3 surface, Phys. Lett. A 381, 1749–1752 (2017). DOI: 10.1016/j.physleta.2017.03.030.
  • J. Yan, Y. Zhang, P. Kim, and A. Pinczuk, Electric field effect tuning of electron-phonon coupling in graphene, Phys. Rev. Lett. 98, 166802 (2007). DOI: 10.1103/PhysRevLett.98.166802.
  • A. Das et al., Phonon renormalization in doped bilayer graphene, Phys. Rev. B 79, 155417 (2009). DOI: 10.1103/PhysRevB.79.155417.
  • A. Das et al., Monitoring dopants by Raman scattering in an electrochemically top-gated graphene transistor, Nat. Nanotechn. 3, 210 (2008). DOI: 10.1038/nnano.2008.67.
  • A. C. Ferrari and D. M. Basko, Raman spectroscopy as a versatile tool for studying the properties of graphene, Nat. Nanotechn. 8, 235 (2013). DOI: 10.1038/nnano.2013.46.
  • V. Ya. Shur, A. R. Akhmatkhanov, and I. S. Baturin, Micro- and nano-domain engineering in lithium niobate, Appl. Phys. Rev. 2, 040604 (2015). DOI: 10.1063/1.4928591.
  • X. Li et al., Large-area synthesis of high-quality and uniform graphene films on copper foils, Science 324, 1312 (2009). DOI: 10.1126/science.1171245.
  • R. Hammoum et al., Characterization of PPLN-microstructures by means of Raman spectroscopy, Appl. Phys. A 91, 65–67 (2008). DOI: 10.1007/s00339-007-4356-3.
  • P. S. Zelenovskiy et al., Raman visualization of micro- and nanoscale domain structures in lithium niobate, Appl. Phys. A 99, 741–744 (2010). DOI: 10.1007/s00339-010-5621-4.
  • V. Ya. Shur et al., Investigation of the nanodomain structure formation by piezoelectric force microscopy and Raman confocal microscopy in LiNbO3 and LiTaO3 crystals, J. Appl. Phys. 110, 052013 (2011). DOI: 10.1063/1.3623778.
  • G. C. Rodrigues et al., Strong piezoelectricity in single-layer graphene deposited on SiO2 grating substrates, Nat. Commun. 6, 7572 (2015). DOI: 10.1038/ncomms8572.
  • G. C. Rodrigues et al., Correspondence: Reply to ‘On the Nature of Strong Piezoelectricity in Graphene on SiO2, Nat. Commun. 7, 11571 (2016). DOI: 10.1038/ncomms11571.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.