197
Views
0
CrossRef citations to date
0
Altmetric
Articles

Multi-level porous carbon prepared via a facile sugar-blowing method for high-performance lithium-sulfur batteries

, , , , &
Pages 148-155 | Received 14 Oct 2018, Accepted 03 Feb 2019, Published online: 10 Sep 2019

References

  • S. Evers, and L. F. Nazar , New approaches for high energy density lithium-sulfur battery cathodes, Acc. Chem. Res. 46 (5), 1135 (2013). DOI: 10.1021/ar3001348.
  • G. Zhou et al., Long-life Li/polysulphide batteries with high sulphur loading enabled by lightweight three-dimensional nitrogen/sulphur-codoped graphene sponge, Nat Commun. 6 (1), 8760 (2015).
  • H.-J. Peng et al., Review on high-loading and high-energy lithium-sulfur batteries, Adv. Energy Mater. 7 (24), 1700260 (2017). DOI: 10.1002/aenm.201700260.
  • R. D. Rauh, A lithium/dissolved sulfur battery with an organic electrolyte, J. Electrochem. Soc. 126 (4), 523 (1979). DOI: 10.1149/1.2129079.
  • J. Shim, K. A. Striebel, and E. J. Cairns, The lithium/sulfur rechargeable cell, J. Electrochem. Soc. 149 (10), A1321 (2002). DOI: 10.1149/1.1503076.
  • A. Manthiram, Y. Fu, and Y.-S. Su , Challenges and prospects of lithium-sulfur batteries, Acc. Chem. Res. 46 (5), 1125 (2013). DOI: 10.1021/ar300179v.
  • R. Chen et al., Graphene-based three-dimensional hierarchical sandwich-type architecture for high-performance Li/S batteries, Nano Lett. 13 (10), 4642 (2013). DOI: 10.1021/nl4016683.
  • B. Papandrea et al., Three-dimensional graphene framework with ultra-high sulfur content for a robust lithium–sulfur battery, Nano Res. 9 (1), 240 (2016). DOI: 10.1007/s12274-016-1005-1.
  • C. Wang et al., Slurryless Li 2 S/reduced graphene oxide cathode paper for high-performance lithium sulfur battery, Nano Lett. 15 (3), 1796 (2015). DOI: 10.1021/acs.nanolett.5b00112.
  • C. Wang et al., Macroporous free-standing nano-sulfur/reduced graphene oxide paper as stable cathode for lithium-sulfur battery, Nano Energy. 11, 678 (2015). DOI: 10.1016/j.nanoen.2014.11.060.
  • G. Hu et al., 3D graphene-foam-reduced-graphene-oxide hybrid nested hierarchical networks for high-performance Li-S batteries, Adv. Mater. 28 (8), 1603 (2016). DOI: 10.1002/adma.201504765.
  • Z. Sun et al., Conductive porous vanadium nitride/graphene composite as chemical anchor of polysulfides for lithium-sulfur batteries, Nat. Comms. 8, 14627 (2017). DOI: 10.1038/ncomms14627.
  • Z. Zhang et al., A high-efficiency sulfur/carbon composite based on 3d graphene nanosheet@carbon nanotube matrix as cathode for lithium-sulfur battery, Adv. Energy Mater. 7 (11), 1602543 (2017). DOI: 10.1002/aenm.201602543.
  • K. Qu et al., Polydopamine-inspired, dual heteroatom-doped carbon nanotubes for highly efficient overall water splitting, Adv. Energy Mater. 7 (9), 1602068 (2017). DOI: 10.1002/aenm.201602068.
  • G. Ai et al., Biomimetic ant-nest electrode structures for high sulfur ratio lithium–sulfur batteries, Nano Lett. 16 (9), 5365 (2016). DOI: 10.1021/acs.nanolett.6b01434.
  • J. Song et al., Strong lithium polysulfide chemisorption on electroactive sites of nitrogen-doped carbon composites for high-performance lithium-sulfur battery cathodes, Angew. Chem. Int. Ed. Engl. 54 (14), 4325 (2015). DOI: 10.1002/anie.201411109.
  • Y. Zhong et al., Popcorn inspired porous macrocellular carbon: Rapid puffing fabrication from rice and its applications in lithium-sulfur batteries, Adv. Energy Mater. 8 (1), 1701110 (2018). DOI: 10.1002/aenm.201701110.
  • Y. Li et al. , A honeycomb-like Co@N-C composite for ultrahigh sulfur loading Li-S batteries, ACS Nano. 11 (11), 11417 (2017). DOI: 10.1021/acsnano.7b06061.
  • F. Pei et al., From hollow carbon spheres to N-doped hollow porous carbon bowls: rational design of hollow carbon host for Li-S batteries, Adv. Energy Mater. 6 (8), 1502539 (2016). DOI: 10.1002/aenm.201502539.
  • Y. Liu et al., Strings of porous carbon polyhedrons as self-standing cathode host for high-energy-density lithium-sulfur batteries, Angew. Chem. Int. Ed. Engl. 56 (22), 6176 (2017). DOI: 10.1002/anie.201700686.
  • P. M. Shanthi et al., Understanding the origin of irreversible capacity loss in non-carbonized carbonate − based metal organic framework (MOF) sulfur hosts for lithium − sulfur battery, Electrochim. Acta. 229, 208 (2017). DOI: 10.1016/j.electacta.2017.01.115.
  • W. Zhang et al., Spontaneous weaving of graphitic carbon networks synthesized by pyrolysis of ZIF-67 crystals, Angew. Chem. Int. Ed. Engl. 56 (29), 8435 (2017). DOI: 10.1002/anie.201701252.
  • W. Chaikittisilp, K. Ariga, and Y. Yamauchi, A new family of carbon materials: synthesis of MOF-derived nanoporous carbons and their promising applications, J. Mater. Chem. A. 1 (1), 14 (2013). DOI: 10.1039/C2TA00278G.
  • W. Su, Porous honeycomb-like carbon prepared by a facile sugar- blowing method for high-performance lithium-sulfur batteries, Int. J. Electrochem. Sci. 13, 6005 (2018). DOI: 10.20964/2018.06.01.
  • X. Yuan et al., Separator modified with N,S co-doped mesoporous carbon using egg shell as template for high performance lithium-sulfur batteries, Chem. Eng. J. 320, 178 (2017). DOI: 10.1016/j.cej.2017.03.022.
  • B. Zhang, X. Qin, G. R. Li, and X. P. Gao, Enhancement of long stability of sulfur cathode by encapsulating sulfur into micropores of carbon spheres, Energy Environ. Sci. 3 (10), 1531 (2010). DOI: 10.1039/c002639e.
  • Z. Zhang et al., 3D interconnected porous carbon aerogels as sulfur immobilizers for sulfur impregnation for lithium-sulfur batteries with high rate capability and cycling stability, Adv. Funct. Mater. 24 (17), 2500 (2014). DOI: 10.1002/adfm.201303080.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.