83
Views
2
CrossRef citations to date
0
Altmetric
Articles

On the synthesis and characterization of environmentally friendly BTNN-PVDF bulk composites

, , , , , , , & show all
Pages 70-79 | Received 17 Jun 2018, Accepted 01 Apr 2019, Published online: 22 Aug 2019

References

  • F. Bahri et al., Dielectric and Raman studies on the solid solution (1 − x)BaTiO3/xNaNbO3 ceramics, Solid State Sci. 5 (9), 1229 (2003). DOI: 10.1016/S1293-2558(03)00156-0.
  • L. F. Cótica et al., Tuning ferroic states in La doped BiFeO3-PbTiO3 displacive multiferroic compounds, J. Appl. Phys. 116 (3), 034107 (2014). DOI: 10.1063/1.4890455.
  • L. Cheng, and J. Li, A review on one dimensional perovskite nanocrystals for piezoelectric applications, J. Materiomics. 2 (1), 25 (2016). DOI: 10.1016/j.jmat.2016.02.003.
  • F. F. C. Duval et al., Fabrication and modeling of high-frequency PZT composite thick film membrane resonators, IEEE Trans. Ultrason, Ferroelect, Freq. Contr. 51 (10), 1255 (2004). DOI: 10.1109/TUFFC.2004.1350953.
  • W. Eerenstein, N. D. Mathur, and J. F. Scott, Multiferroic and magnetoelectric materials, Nature. 442 (7104), 759 (2006). DOI: 10.1038/nature05023.
  • H. Béa et al., Evidence for room-temperature multiferroicity in a compound with a giant axial ratio, Phys. Rev. Lett. 102 (1–5), 217603 (2009).
  • V. F. Freitas et al., On the microscopic mechanism for the stabilization of structural and ferroic states in displacive multiferroics, J. Appl. Phys. 113 (11), 114105 (2013). DOI: 10.1063/1.4795766.
  • L. Gacem et al., Crystal growth and dielectric characterization of crystals derived from the solid-solution Ba(1-x)NaxTi(1x)NbxO3 (BTNN), Mater. Res. Bull. 44 (12), 2240 (2009). DOI: 10.1016/j.materresbull.2009.07.019.
  • R. B. Zampiere et al., Enhanced ferroism in mechanically processed and environmentally friendly Ba0.3Na0.7Ti0.3Nb0.7O3 ceramics, Scr. Mater. 66 (8), 542 (2012). DOI: 10.1016/j.scriptamat.2011.12.031.
  • D. A. Porter, T. V. T. Hoang, and T. A. Berfield, Effects of in-situ poling and process parameters on fused filament fabrication printed PVDF sheet mechanical and electrical properties, Additive Manuf. 13, 81 (2017). DOI: 10.1016/j.addma.2016.11.005.
  • K. Prasad et al., Electrical conduction in 0–3 BaTiO3/PVDF composites, Integ. Ferroelectr. 117 (1), 55 (2010). DOI: 10.1080/10584587.2010.489425.
  • A. K. Tripathi, R. Sekar, and P. K. C. Pillai, XRD studies of BaTiO3-PVDF composites, J. Mater. Sci.: Mater. Electron. 2, 54 (1991). DOI: 10.1007/BF00695005.
  • X. Renxin et al., Dielectric and piezoelectric properties of 0–3 PZT/PVDF composite doped with polyaniline, J. Wuhan Univ. Technol-Mat. Sci. Edit. 21, 84 (2006). DOI: 10.1007/BF02861478.
  • I. A. Santos et al., Dielectric and structural features of the environmentally friendly leadfree PVDF/Ba0.3Na0.7Ti0.3Nb0.7O3 0–3 composite, Current Applied Physics. 16 (11), 1468 (2016). DOI: 10.1016/j.cap.2016.08.016.
  • A. J. Moulson, and J. M. Herbert, Electroceramics: Materials, Properties, Applications (Wiley, London/New York/Sydney, 2003).
  • K. Osinska, and D. Czekaj, Thermal behavior of BST//PVDF ceramic–polymer composites, J. Therm. Anal. Calorim. 113, 69 (2013). DOI: 10.1007/s10973-013-3026-2.
  • R. E. Newnham, Composite electroceramics, Ferroelectrics. 68 (1), 1 (1986).
  • G. R. Salmazzo et al., Synthesis and structural characterization of composites based on poly(vinylidenefluoride)/(Pb0.91La0.09)(Zr0.65Ti0.35)0.98O3, Cerâmica. 60 (353), 83 (2014). DOI: 10.1590/S0366-69132014000100012.
  • M. T. Sebastian, and H. Jantunen, Polymer–ceramic composites of 0–3 connectivity for circuits in electronics: a review, Int. J. Appl. Ceram. Technol. 7, 415 (2010).
  • Y. Bormashenko et al., Vibrational spectrum of PVDF and its interpretation, Polym. Test. 23 (7), 791 (2004). DOI: 10.1016/j.polymertesting.2004.04.001.
  • B. S. Ince-Gunduz et al., Impact of nanosilicates on poly(vinylidene fluoride) crystal polymorphism: Part 1. Melt-crystallization at high supercooling, Polymer. 51 (6), 1485 (2010). DOI: 10.1016/j.polymer.2010.01.011.
  • Y. Peng, and P. Wu, A two dimensional infrared correlation spectroscopic study on the structure changes of PVDF during the melting process, Polymer. 45 (15), 5295 (2004). DOI: 10.1016/j.polymer.2004.05.034.
  • S. Satapathy et al., Crystallization of β-phase poly(vinylidene fluoride) films using dimethyl sulfoxide (DMSO) solvent and at suitable annealing condition, Condens. Matter. arXiv:0808.0419 (2008).
  • X. Jin et al., Investigation on FTIR spectra of barium calcium titanate ceramics, J. Electroceram. 22 (1–3), 285 (2009). DOI: 10.1007/s10832-007-9402-1.
  • N. Chaiyo et al., Solution combustion synthesis and characterization of lead-free piezoelectric sodium niobate (NaNbO3) powders, J. Alloys Compd. 509 (5), 2445 (2011). DOI: 10.1016/j.jallcom.2010.11.043.
  • A. Salimi, and A. A. Yousefi, Conformational changes and phase transformation mechanisms in PVDF solution‐cast films, J. Polym. Sci. B. Polym. Phys. 42 (18), 3487 (2004). DOI: 10.1002/polb.20223.
  • J. Yuan et al., High dielectric loss and microwave absorption behavior of multiferroic BiFeO3 ceramic, Ceram. Int. 39 (6), 7241 (2013). DOI: 10.1016/j.ceramint.2013.01.068.
  • R. Gregório, Jr., M. Cestari, and F. E. Bernardino, Dielectric behaviour of thin films of β-PVDF/PZT and β-PVDF/BATiO3 composites, Journal of Materials Science. 31, 2925 (1995). DOI: 10.1007/BF00356003.
  • Z. Dang et al., Effect of BaTiO3 size on dielectric property of BaTiO3/PVDF composites, J. Electroceram. 21 (1–4), 381 (2008). DOI: 10.1007/s10832-007-9201-8.
  • C. Muralidhar, and P. K. C. Pillai, Effect on the melting point and heat of fusion of PVDF in barium titanate (BaTiO3)/polyvinylidene fluoride (PVDF) composites, Mater. Res. Bull. 23 (3), 323 (1988). DOI: 10.1016/0025-5408(88)90004-9.
  • T. Zhou et al., Improving dielectric properties of BaTiO3/ferroelectric polymer composites by employing surface hydroxylated BaTiO3 nanoparticles, ACS Appl. Mater. Interfaces . 3, 2184 (2011). DOI: 10.1021/am200492q.
  • P. Thongsanitgarn, A. Watcharapasorn, and S. Jiansirisomboon, Electrical and mechanical properties of PZT/PVDF 0–3, Surf. Rev. Lett. 17 (1), 1 (2010). DOI: 10.1142/S0218625X10013540.
  • T. Yamada, T. Ueda, and T. Kitayama, Piezoelectricity of a high-content lead zirconate titanate/polymer composite, J. Appl. Phys. 53 (6), 4328 (1982). DOI: 10.1063/1.331211.
  • E. Venkatragavaraj et al., Piezoelectric properties of ferroelectric PZT–polymer composites, J. Phys. D: Appl. Phys. 34 (4), 487 (2001). DOI: 10.1088/0022-3727/34/4/308.
  • X. Cai et al., A surface treating method for ceramic particles to improve the compatibility with PVDF polymer in 0–3 piezoelectric composites, J. Mater. Sci. Lett. 16 (4), 253 (1997).
  • Z. De-Qing et al., Structural and electrical properties of PZT/PVDF piezoelectric nanocomposites prepared by cold-press and hot-press routes, Chin. Phys. Lett. 25 (12), 4410 (2008). DOI: 10.1088/0256-307X/25/12/063.
  • B. Wei, and Y. Daben, Dielectric and piezoelectric properties of 0–3 composite film in PCM/PVDF and PZT/PVDF, Ferroelectrics. 157 (1), 427 (1994). DOI: 10.1080/00150199408229544.
  • X. D. Chen et al., 0–3 Piezoelectric composite film with high d33 coefficient, Sensor. Actuator. A. 65 (2–3), 194 (1998). DOI: 10.1016/S0924-4247(97)01685-3.
  • J. Yao et al., Enhancement of dielectric constant and piezoelectric coefficient of ceramic–polymer composites by interface chelation, J. Mater. Chem. 19 (18), 2817 (2009). DOI: 10.1039/b819910h.
  • D. K. Das-Gupta, and K. Doughty, Polymer ceramic composite-materials with high dielectric-constants, Thin Solid Films. 158 (1), 93 (1988). DOI: 10.1016/0040-6090(88)90306-9.
  • R. Senthilkumar et al., Investigations on ferroelectric PZT-PVDF composites of 0–3 connectivity, Ferroelectrics. 325 (1), 121 (2005). DOI: 10.1080/00150190500328544.
  • P. A. Sampathkumar, A review on PZT-polymer composites: dielectric and piezoelectric properties, Nano Vision. 3, 223 (2013).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.