33
Views
0
CrossRef citations to date
0
Altmetric
Articles

Influence of escaping of Na & K on physical properties in lead-free Na0.92K0.08NbO3 ceramic

ORCID Icon, , , &
Pages 40-46 | Received 07 Jul 2018, Accepted 13 Jun 2019, Published online: 03 Dec 2019

References

  • G. A. Samara, Effects of pressure on the dielectric properties and phase transitions of the alkali metal tantalates and niobates. Ferroelectrics. 73(1), 145 (1987). DOI: 10.1080/00150198708227914.
  • B. T. Mathias, J. P. Remeika, Dielectric properties of sodium and potassium niobates. Phys. Rev. 82(5), 727 (1951). DOI: 10.1103/PhysRev.82.727.
  • B. Jaffe, W. R. Cook, and H. Jaffe, Piezoelectric Ceramics, Vol. 3, ix, p 317. (Academic Press, New York, 1971).
  • Y. Lu, D.-Y. Jeong, Z.-Y. Cheng, Q. M. Zhang, H.-S. Luo, Z.-W. Yin, and D. Viehland, Phase transitional behavior and piezoelectric properties of the orthorhombic phase of Pb(Mg1/3Nb2/3)O3–PbTiO3 single crystals. Appl. Phys. Lett. 78(20), 3109 (2001).
  • W. Ren, S. F. Liu, and B. K. Mukherjee, Piezoelectric properties and phase transitions of/001S-oriented Pb(Zn1/3Nb2/3)O3–PbTiO3 single crystals. Appl. Phys. Lett. 80(17), 3174 (2002). DOI: 10.1063/1.1474600.
  • S. E. Park, and T. R. Shrout, Ultrahigh strain and piezoelectric behavior in relaxor based ferroelectric single crystals. J. Appl. Phys. 82(4), 1804 (1997). DOI: 10.1063/1.365983.
  • Y. Saito, H. Takao, T. Tani, T. Nonoyama, K. Takatori, T. Homma, T. Nagaya, and M. Nakamura, Lead-free piezoceramics. Nature (London). 432(7013), 84 (2004).
  • Y. Guo, K. Kakimoto, and H. Ohsato, Phase transitional behavior and piezoelectric properties of (Na0.5K0.5)NbO3–LiNbO3(Na0.5K0.5)NbO3–LiNbO3 ceramics. Appl. Phys. Lett. 85(18), 4121 (2004). DOI: 10.1063/1.1813636.
  • M. Matsubara, K. Kikuta, and S. Hirano, Piezoelectric properties of (K0.5Na0.5)(Nb1 − xTax)O3 − K5.4CuTa10O29 ceramics. J. Appl. Phys. 97(11), 114105 (2005). DOI: 10.1063/1.1926396.
  • Y. Guo, K. Kakimoto, and H. Ohsato, (Na0.5K0.5)NbO3–LiTaO3 lead-free piezoelectric ceramics. Mater. Lett. 59(2–3), 241 (2005). DOI: 10.1016/j.matlet.2004.07.057.
  • E. Hollenstein, M. Davis, D. Damjanovic, and N. Setter, Piezoelectric properties of Li- and Ta-modified (K0.5Na0.5)NbO3 ceramics. Appl. Phys. Lett. 87(18), 182905 (2005). DOI: 10.1063/1.2123387.
  • H.-Y. Park, C.-W. Ahn, H.-C. Song, J.-H. Lee, S. Nahm, K. Uchino, H.-G. Lee, and H.-J. Lee, Microstructure and piezoelectric properties of 0.95(Na0.5K0.5)NbO3–0.05BaTiO30.95(Na0.5K0.5)NbO30.05BaTiO3 ceramics. Appl. Phys. Lett. 89(6), 062906 (2006).
  • Y. Saito, and H. Takao, Synthesis of polycrystalline plate like KNbO3 particles by the topochemical micro-crystal conversion method and fabrication of grain-oriented (K0.5Na0.5)NbO3 ceramics. J. Euro. Ceram. Soc. 27(13–15), 4085 (2007). DOI: 10.1016/j.jeurceramsoc.2007.02.099.
  • H. Lu, S.-Y. Lo, and H.-C. Lin, Hydrothermal synthesis of nonlinear optical potassium niobate ceramic powder. Mater. Lett. 34(3–6), 172 (1998). DOI: 10.1016/S0167-577X(97)00170-5.
  • C.-H. Lu, S.-Y. Lo, and Y. L. Wang, Glycothermal preparation of potassium niobate ceramic particles under supercritical condition. Mater. Lett. 55(1–2), 121 (2002). DOI: 10.1016/S0167-577X(01)00633-4.
  • G. Shirane, R. Newnham, and R. Pepinsky, Dielectric properties and phase transitions of NaNbO3 and (Na,K)NbO3. Phys. Rev. 96(3), 581 (1954). DOI: 10.1103/PhysRev.96.581.
  • L. Egerton, and D. M. Dillon, Piezoelectric and dielectric properties of ceramics in the system potassium-sodium niobate. J. Am. Ceram. Soc. 42(9), 438 (1959). DOI: 10.1111/j.1151-2916.1959.tb12971.x.
  • R. E. Jaeger, and L. Egerton, Hot pressing of potassium-sodium niobates. J. Am. Ceram. Soc. 45(5), 209 (1962). DOI: 10.1111/j.1151-2916.1962.tb11127.x.
  • G. H. Haertling, Properties of hot-pressed ferroelectric alkali niobate ceramics. J. Am. Ceram. Soc. 50(6), 329 (1967). DOI: 10.1111/j.1151-2916.1967.tb15121.x.
  • N. Klein, E. Hollenstein, D. Damjanovic, H. J. Trodahl, N. Setter, and M. Kuball, A study of the phase diagram of (K,Na,Li)NbO3 determined by dielectric and piezoelectric measurements, and Raman spectroscopy. J. Appl. Phys. 102(1), 014112 (2007).
  • Y. Guo, K. Kakimoto, and H. Ohsato, Phase transitional behavior and piezoelectric properties of (Na0.5K0.5)NbO3– LiNbO3 ceramics. Appl. Phys. Lett. 85(18), 4121 (2004). DOI: 10.1063/1.1813636.
  • M. Matsubara, T. Yamaguchi, K. Kikuta, and S. I. Hirano, Effect of Li substitution on the piezoelectric properties of potassium sodium niobate ceramics. Jpn. J. Appl. Phys. 44(8), 6136 (2005). DOI: 10.1143/JJAP.44.6136.
  • Y. Guo, K. Kakimoto, and H. Ohsato, (Na0.5K0.5)NbO3–LiTaO3 lead-free piezoelectric ceramics. Mater. Lett. 59(2–3), 241 (2005). DOI: 10.1016/j.matlet.2004.07.057.
  • R. Wang, R.-J. Xie, K. Hanada, K. Matsusaki, H. Kawanaka, H. Bando, T. Sekiya, and M. Itoh, Enhanced piezoelectricity around the tetragonal/orthorhombic morphotropic phase boundary in (Na, K)NbO3–ATiO3 solid solutions. J. Electroceram. 21(1–4), 263 (2008).
  • Y. Saito, H. Takao, T. Tani, T. Nonoyama, K. Takatori, T. Homma, T. Nagaya, and M. Nakamura, Lead-free piezoceramics. Nature (London) 432(7013), 84 (2004).
  • L. Wu, J. L. Zhang, C. L. Wang, and J. C. Li, Influence of compositional ratio K/Na on physical properties in KxNa1 − xNbO3 ceramics. J. Appl. Phys. 103(8), 084116 (2008). DOI: 10.1063/1.2907866.
  • R. C. Chang, S.-Y. Chu, Y.-F. Lin, C.-S. Hong, P.-C. Kao, and C.-H. Lu, The effects of sintering temperature on the properties of (Na0.5K0.5)NbO3-CaTiO3 based lead-free ceramics. Sens. Actuat. A. 138(2), 355 (2007).
  • H. Birol, D. Damjanovic, and N. Setter, Preparation and characterization of (K0.5Na0.5)NbO3 ceramics. J. Eur. Ceram. Soc. 26(6), 861 (2006). DOI: 10.1016/j.jeurceramsoc.2004.11.022.
  • J. G. Fisher, D. Rout, K.-S. Moon, and S.-J. L. Kang, High-temperature X-ray diffraction and Raman spectroscopy study of (K0.5Na0.5)NbO3 ceramics sintered in oxidizing and reducing atmospheres. Mater. Chem. Phys. 120(2–3), 263 (2010). DOI: 10.1016/j.matchemphys.2009.11.001.
  • V. J. Tennery, K. W. Hang, and X. Thermal, Ray diffraction studies of the NaNbO3–KNbO3 system. J. Appl. Phys. 39(10), 4749 (1968). DOI: 10.1063/1.1655833.
  • C. N. W. Darlington, and H. D. Megaw, The low-temperature phase transition of sodium niobate and the structure of the low-temperature phase. Acta Crystallogr. B Struct. Sci. B29, 2171 (1973). DOI: 10.1107/S0567740873006308.
  • R. Zuo, J. Rodel, R. Chen, and L. Li, Sintering and electrical properties of lead-free Na0.5K0.5NbO3 piezoelectric ceramics. J. Am. Ceram. Soc. 89(6), 2010 (2006). DOI: 10.1111/j.1551-2916.2006.00991.x.
  • J. B. Lim, S. Zhang, J. H. Jeon, and T. R. Shrout, (K,Na)NbO3-based ceramics for piezoelectric “hard” lead-free materials. J. Am. Ceram. Soc. 93(5), 1218 (2010).
  • M. Matsubara, T. Yamaguchi, K. Kikuta, and S. I. Hirano, Effect of Li substitution on the piezoelectric properties of potassium sodium niobate ceramics. Jpn. J. Appl. Phys. 44(8), 6136 (2005). DOI: 10.1143/JJAP.44.6136.
  • Y. Zhen, and J. F. Li, Normal sintering of (K,Na)NbO3-based ceramics: Influence of sintering temperature on densification, microstructure, and electrical properties. J. Am. Ceram. Soc. 89(12), 3669 (2006). DOI: 10.1111/j.1551-2916.2006.01313.x.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.