145
Views
3
CrossRef citations to date
0
Altmetric
Articles

Dielectric, ferroelectric, piezoelectric properties, and impedance spectroscopy of (Ba0.85Ca0.15)(Ti0.9 Zr0.1)O3-x% (K0.5Bi0.5)TiO3 lead-free ceramics

, , , &
Pages 152-177 | Received 12 Oct 2018, Accepted 15 Jun 2019, Published online: 03 Dec 2019

References

  • Y. Saito et al., Lead-free piezoceramics. Nature. 432 (7013), 84 (2004). DOI: 10.1038/nature03028.
  • J. Rödel et al., Perspective on the development of lead-free piezoceramics. J. Am. Ceram. Soc. 92 (6), 1153 (2009).
  • H. L. Du et al., Preparation and piezoelectric properties of (K0.5Na0.5)NbO3 lead-free piezoelectric ceramics with pressure-less sintering. J. Mater. Sci. Eng. B 131 (1–3), 83 (2006). DOI: 10.1016/j.mseb.2006.03.039.
  • B. Jaffe, W. R. Cook, and H. Jaffe, Piezoelectric Ceramics (Academic Press, London, 1971).
  • K. Kakimo, I. Musada, and H. Osato, Jpn. J. Appl. Phys. 41, 6908 (2002). DOI: 10.1143/JJAP.41.2249.
  • Y. Noguchi and M. Miyayama, Large remanent polarization of vanadium-doped Bi4Ti3O12. Appl. Phys. Lett. 78 (13), 1903 (2001). DOI: 10.1063/1.1357215.
  • J. G. Wu, Y. Y. Wang, D. Q. Xiao, J. G. Zhu, and Z. H. Pu, Effects of Ag content on the phase structure and piezoelectric properties of (K0.44−xNa0.52Li0.04Agx) (Nb0.91Ta0.05Sb0.04)O3 lead-free ceramics, Appl. Phys. Lett. 91, 132914 (2007).
  • G. A. Smolensky, V. A. Isupov, and A. I. Aganovskaya, New Ferroelectrics of Complex Composition, Sov. Phys.-Solid State 2, 2651 (1961).
  • D. Lin et al., Piezoelectric and ferroelectric properties of [Bi0.5(Na1-x-yKxLiy)0.5]TiO3 lead-free piezoelectric ceramics. Appl. Phys. Lett. 88 (6), 062901 (2006). DOI: 10.1063/1.2176856.
  • N. Setter et al., Ferroelectric thin films: Review of materials, properties, and applications. J. Appl. Phys. 100 (5), 051606 (2006). DOI: 10.1063/1.2336999.
  • T. Takenaka and H. Nagata, Current status and prospects of lead-free piezoelectric ceramics. J. Eur. Ceram. Soc. 25 (12), 2693 (2005). DOI: 10.1016/j.jeurceramsoc.2005.03.125.
  • T. Takenaka, K. Maruyama, and K. Sakata, (Bi0.5Na0.5)TiO3–BaTiO3 system for lead free piezoelectric ceramics. Jpn. J. Appl. Phys. 30 (Part 1, 9B), 2236 (1991). DOI: 10.1143/JJAP.30.2236.
  • M. Chen et al., Structure and electrical properties of (Na0.5Bi0.5)1−x BaxTiO3 piezoelectric ceramics. J. Eur. Ceram. Soc. 28 (4), 843 (2008). DOI: 10.1016/j.jeurceramsoc.2007.08.007.
  • B.-J. Chu et al., Electrical properties of (Na1/2Bi1/2)TiO3–BaTiO3 ceramics. J. Eur. Ceram. Soc. 22 (13), 2115 (2002). DOI: 10.1016/S0955-2219(02)00027-4.
  • C. G. Xu, D. M. Lin, and K. W. Kwok, Structure, electrical properties and depolarization temperature of (Bi0.5Na0.5)TiO3–BaTiO3 lead-free piezoelectric ceramics. Solid State Sci. 10 (7), 934 (2008). DOI: 10.1016/j.solidstatesciences.2007.11.003.
  • G. Feng et al., Microstructure and piezoelectric properties of textured (Na0.84K0.16)0.5Bi0.5TiO3 lead-free ceramics, J. Eur. Ceram. Soc. 27, 3453 (2007).
  • W. Xiaoxing, C. H. Laiwa, and C. Chungloong, Piezoelectric and dielectric properties of CeO2-added (Na0.5Bi0.5)0.94Ba0.06TiO3 lead-free ceramics, Solid State Commun. 125, 395 (2003).
  • W. F. Liu and X. B. Ren, Large piezoelectric effect in Pb-free ceramics. Phys. Rev. Lett. 103 (25), 257602 (2009). DOI: 10.1103/PhysRevLett.103.257602.
  • L. S. Seveyrat and P. Gonnard, Processing and characterization of piezoelectric thick films screen-printed on silicon and glass-ceramic substrates. Integr. Ferroelectr. 51 (1), 1 (2003). DOI: 10.1080/10584580390230606.
  • R. Sasaki et al., Low-temperature sintering of alkaline niobate based piezoelectric ceramics using sintering aids. J. Ceram. Soc. Jpn. 116 (1359), 1182 (2008). DOI: 10.2109/jcersj2.116.1182.
  • J. G. Wu et al., Role of room-temperature phase transition in the electrical properties of (Ba, Ca)(Ti, Zr)O3 ceramics. Scr. Mater. 65 (9), 771 (2011). DOI: 10.1016/j.scriptamat.2011.07.028.
  • T. Chen et al., Effect of CuO on the microstructure and electrical properties of Ba0.85Ca0.15Ti0.90Zr0.10O3 piezoceramics. J. Mater. Sci. 47 (11), 4612 (2012).
  • Y. Cui et al., Lead-free (Ba0.85Ca0.15)(Ti0.9Zr0.1)O3-Y2O3 ceramics with large piezoelectric coefficient obtained by low-temperature sintering. J. Mater. Sci. Mater. Electron. 24 (2), 654 (2013). DOI: 10.1007/s10854-012-0785-7.
  • Y. Cui et al., Lead-free (Ba0.85Ca0.15)(Ti0.9Zr0.1)O3–CeO2 ceramics with high piezoelectric coefficient obtained by low-temperature sintering. Ceram. Int. 38 (6), 4761 (2012). DOI: 10.1016/j.ceramint.2012.02.063.
  • Z. Feng et al., Large piezoelectric effect in low temperature sintered lead-free (Ba0,85Ca0,15) (Zr 0,1 Ti0,9) O3 hick films. Funct. Mater. Lett. 5 (3), 1250029 (2012). DOI: 10.1142/S1793604712500294.
  • Y. D. Hou et al., Comparative study of K0.5Bi0.5TiO3 nanoparticles derived from sol–gel-hydrothermal and sol–gel routes. Solid State Commun. 137 (12), 658 (2006). DOI: 10.1016/j.ssc.2006.01.023.
  • Y. Himura et al., Ferroelectric and piezo-electric properties of (Bi1/2K1/2)TiO3 ceramics. Jpn. J. Appl. Phys. 44 (7A), 5040 (2005).
  • A. Prasatkhetragarn et al., Dielectric and ferroelectric properties of 0.8PZT–0.2PCN ceramics under sintering conditions variation. Curr. Appl. Phys. 9 (5), 1165 (2009). DOI: 10.1016/j.cap.2009.01.005.
  • R. B. Atkin and R. M. Fulrath, Point defects and sintering of lead zirconate-titanate. J. Am Ceram Soc. 54 (5), 265 (1971). DOI: 10.1111/j.1151-2916.1971.tb12286.x.
  • J. H. Cho et al., Sintering behavior of cadmium-doped Pb(Ni1/3Nb2/3)O3-PbZrO3-PbTiO3 ceramics. J. Am. Ceram. Soc. 80 (6), 1523 (2005). DOI: 10.1111/j.1151-2916.1997.tb03012.x.
  • C. Y. Chen, Y. Hu, and H. L. Lin, Temperature sintering process for PMnN-PZT ceramics, Mater. Chem. Phys. 99, 26 (2006). DOI: 10.1016/j.matchemphys.2005.09.009.
  • Q. Zhou et al., Dielectric properties and depolarization temperature of Bi0.5(Na, K)0.5TiO3–BiFeO3 lead-free ceramics. Phys. B. 405 (2), 613 (2010). DOI: 10.1016/j.physb.2009.09.075.
  • D. M. Lin et al., The relations of sintering conditions and microstructures of [Bi0.5(Na1-x-yKxLiy)0.5]TiO3 piezoelectric ceramics. Cryst. Res. Technol. 39 (1), 30 (2004). DOI: 10.1002/crat.200310145.
  • E. Cai et al., Structure, piezoelectric, dielectric and ferroelectric properties of lead-free (1-x)(Ba0.85Ca0.15)(Ti0.93Zr0.07)O3-x(Bi0.5K0.5)TiO3 ceramics. J. Alloys Compd. 726, 1168 (2017). DOI: 10.1016/j.jallcom.2017.08.083.
  • C. K. Suman, K. Prasad, and R. N. P. Choudhary, Impedance spectroscopic studies of ferroelectric Pb2Sb3 DyTi5 O18 ceramic. Adv. Appl. Ceram. 104 (6), 294 (2005). DOI: 10.1179/174367605X62580.
  • E. Venkata Ramana et al., Structure and ferroelectric studies of (Ba0.85Ca0.15)(Ti0.9Zr0.1)O3 piezoelectric ceramics, Mater. Res. Bull. 48, 4395 (2013). DOI: 10.1016/j.materresbull.2013.05.108.
  • W. Wang et al., Phase transitions in (1−x)BaZr0.2Ti0.8O3−xBa0.7Ca0.3TiO3 powders and ceramic pellets. Ceram. Int. 40 (3), 3933 (2014). DOI: 10.1016/j.ceramint.2013.06.004.
  • P. Vijaya Bhaskar Rao and T. Bhima Sankaram, Impedance spectroscopy studies of K0.5Bi0.5TiO3, J Electroceram. 25, 60 (2010).
  • Q. Yuan and Y. Pu, Effects of K0.5Bi0.5TiO3 addition on dielectric properties of BaTiO3 ceramics. Ceram. Int. 39 (4), 3507 (2013). DOI: 10.1016/j.ceramint.2012.10.174.
  • K. Uchino and S. Nomura, Critical exponents of the dielectric constants in diffused-phase-transition crystals. Ferroelectrics. 44 (1), 55 (1982). DOI: 10.1080/00150198208260644.
  • A. A. Bokov and Z.-G. Ye, Recent progress in relaxor ferroelectrics with perovskite structure. J. Mater. Sci. 41 (1), 31 (2006). DOI: 10.1007/s10853-005-5915-7.
  • L. E. Cross, Relaxorferroelectrics: An overview. Ferroelectrics. 151 (1), 305 (1994). DOI: 10.1080/00150199408244755.
  • Y. Moriya et al., Specific-heat anomaly caused by ferroelectric nanoregions in Pb(Mg(1/3)Nb(2/3))O3 and Pb(Mg(1/3)Ta(2/3))O3 relaxors. Phys. Rev. Lett. 90 (20), 205901 (2003). DOI: 10.1103/PhysRevLett.90.205901.
  • B. Jiménez and J. M. Vicente, Oxygen defects and low-frequency mechanical relaxation in Pb-Ca and Pb-Sm titanates. J. Phys. D Appl. Phys. 31 (4), 446 (1998). DOI: 10.1088/0022-3727/31/4/014.
  • A. P. Barranco, J. D. S. Guerra, R. L. Noda, and E. B. Araújo, Ionized oxygen vacancy-related electrical conductivity in (Pb1−x Lax) (Zr0.9 Ti0.1) 1−x/4O3 ceramics. J. Phys. D Appl. Phys. 41, 215503 (2008). DOI: 10.1088/0022-3727/41/21/215503.
  • V. Schmitt and F. Raether, Effect of cobalt doping on the sintering mechanisms of the lead-free piezoceramic (Bi0.5Na0.5)TiO3. J. Eur. Ceram. Soc. 34 (1), 15 (2014). DOI: 10.1016/j.jeurceramsoc.2013.07.021.
  • P. Gao et al., A comparative study on positive temperature coefficient effect of BaTiO3–K0.5Bi0.5TiO3 ceramics by conventional and microwave sintering. Ceram. Int. 40 (1), 637 (2014). DOI: 10.1016/j.ceramint.2013.06.047.
  • H. Xue et al., Dielectric properties and current–voltage nonlinear behavior of Ca1−xSrxCu3Ti4O12 ceramics. J. Alloys Compd. 482 (1–2), L14 (2009). DOI: 10.1016/j.jallcom.2009.03.190.
  • D. C. Sinclair and A. R. West, Impedance and modulus spectroscopy of semiconducting BaTiO3 showing positive temperature coefficient of resistance. J. Appl. Phys. 66 (8), 3850 (1989). DOI: 10.1063/1.344049.
  • Lily et al., Impedance spectroscopy of (Na0.5Bi0.5)(Zr0.25Ti0.75)O3 lead-free ceramic. J. Alloys Compd. 453 (1–2), 325 (2008).
  • T. A. Nealon, Low-frequency dielectric responses in PMN-type ceramics. Ferroelectrics. 76 (1), 377 (1987). DOI: 10.1080/00150198708016958.
  • A. K. Jonscher, The ‘universal’ dielectric response. Nature. 267 (5613), 673 (1977). DOI: 10.1038/267673a0.
  • S. Grimnes and O. G. Martinsen, Cole electrical impedance model - A critique and an alternative. IEEE Trans. Biomed. Eng. 52 (1), 132 (2005). DOI: 10.1109/TBME.2004.836499.
  • J.-B. Jorcin et al., CPE analysis by local electrochemical impedance spectroscopy. Electrochim. Acta 51 (8–9), 1473 (2006). DOI: 10.1016/j.electacta.2005.02.128.
  • K. S. Cole and C. H. Cole, Dispersion and Absorption in Dielectrics I. Alternating Current Characteristics, J Chem. Phys. 10, 98 (1941). DOI: 10.1063/1.1723677.
  • A. K. Jonscher, Dielectric Relaxation in Solids (Chelsea Dielectrics Press, London, 1983).
  • M. A. L. Nobre and S. Lanfredi, Phase transition in sodium lithium niobate polycrystal: An overview based on impedance spectroscopy. J. Phys. Chem. Solids. 62 (11), 1999 (2001). DOI: 10.1016/S0022-3697(01)00042-7.
  • G. M. Tsangaris, G. C. Psarras, and N. Kouloumbi, Evaluation of dielectric behaviour of particulate composites consisting of polymeric matrix and conductive filler. Mater. Sci. Technol. 12 (7), 533 (1996). DOI: 10.1179/mst.1996.12.7.533.
  • D. C. Sinclair and A. R. West, Effect of atmosphere on the PTCR properties of BaTiO3 ceramics. J. Mater. Sci. 29 (23), 6061 (1994). DOI: 10.1007/BF00354542.
  • M. Ram and S. Chakrabarti, Dielectric and modulus behavior of LiFe1/2Ni1/2VO4 ceramics. J. Phys. Chem. Solids. 69 (4), 905 (2008). DOI: 10.1016/j.jpcs.2007.10.008.
  • R. Ranjan et al., Impedance and electric modulus analysis of Sm-modified Pb(Zr0.55Ti0.45)1−x/4O3 ceramics. J. Alloys Compd. 509 (22), 6388 (2011). DOI: 10.1016/j.jallcom.2011.03.003.
  • P. Dutta et al., The DC and AC conductivity of polyaniline-polyvinyl alcohol blends, Synth. Met. 122, 455 (2001). DOI: 10.1016/S0379-6779(00)00588-9.
  • H. Du et al., Relaxor behavior of bismuth layer-structured ferroelectric ceramic with m = 2. Solid State Commun. 148 (7–8), 357 (2008). DOI: 10.1016/j.ssc.2008.05.017.
  • P. Balaya et al., Mesoscopic electrical conduction in nanocrystalline SrTiO3. Appl. Phys. Lett. 88 (6), 062109 (2006). DOI: 10.1063/1.2171798.
  • J. Zheng and J. S. Reed, Particle and granule parameters affecting compaction efficiency indrypressing. J. Am. Ceram. Soc. 71 (11), C456 (1988). DOI: 10.1111/j.1151-2916.1988.tb07546.x.
  • A. Kaushal et al., Structural, mechanical and dielectric properties of Ba0.6Sr0.4TiO3—The benefits of a colloidal processing approach. Mater. Res. Bull. 50, 329 (2014). DOI: 10.1016/j.materresbull.2013.11.028.
  • Xin-Gui and L.-W. Chan, Effect of grain size on the electrical properties of (Ba,Ca)(Zr,Ti)O3 relaxor ferroelectric ceramics, Journal of Applied Physics, 97, 034109 (2005). DOI: 10.1063/1.1849817.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.