196
Views
7
CrossRef citations to date
0
Altmetric
Articles

Relaxor ferroelectrics and related superglasses

&
Pages 1-7 | Received 17 Jul 2018, Accepted 14 Aug 2019, Published online: 07 Jan 2020

References

  • http://www.thp.uni-due.de/IS2013/Faltblatt.pdf
  • X. Ren, Ferroelastic, ferromagnetic, and ferroelectric glasses – unusual properties from glassy nanodomains, Phys. Status Solidi B. 251 (10), 1982 (2014). DOI: 10.1002/pssb.201451351.
  • A. A. Bokov and Z. G. Ye, Recent progress in relaxor ferroelectrics with perovskite structure, J. Mater. Sci. 41 (1), 31 (2006). DOI: 10.1007/s10853-005-5915-7.
  • V. Westphal, W. Kleemann, and M. D. Glinchuk, Diffuse phase transitions and random-field-induced domain states of the relaxor ferroelectric PbMg1/3Nb2/3O3, Phys. Rev. Lett. 68 (6), 847 (1992). DOI: 10.1103/PhysRevLett.68.847.
  • W. Kleemann, Relaxor ferroelectrics: cluster glass ground state via random fields and random bonds, Phys. Status Solidi B. 251 (10), 1993 (2014). DOI: 10.1002/pssb.201350310.
  • W. Kleemann and J. Dec, Ferroic superglasses – polar nanoregions in relaxor ferroelectric PMN vs. CoFe superspins in a discontinuous multilayer, Phys. Rev. B. 94 (17), 174203 (2016). DOI: 10.1103/PhysRevB.94.174203.
  • S. Bedanta and W. Kleemann, Supermagnetism, J. Phys. D: Appl. Phys. 42 (1), 013001 (2009). DOI: 10.1088/0022-3727/42/1/013001.
  • S. Sahoo et al., Cooperative vs. superparamagnetic behavior of dense magnetic nanoparticles in Co80Fe20/Al2O3 multilayers, Appl. Phys. Lett. 82 (23), 4116 (2003). DOI: 10.1063/1.1581002.
  • S. Bedanta et al., Single-particle blocking and collective magnetic states in discontinuous CoFe/Al2O3 multilayers, J. Phys. D: Appl. Phys. 43 (47), 474002 (2010). DOI: 10.1088/0022-3727/43/47/474002.
  • A. T. Ogielski, Dynamics of three-dimensional Ising spin glasses in thermal equilibrium, Phys. Rev. B. 32 (11), 7384 (1985). DOI: 10.1103/PhysRevB.32.7384.
  • O. Petracic et al., Cole-Cole analysis of the superspin glass system Co80Fe20/Al2O3, Phase Transit. 76 (4–5), 367 (2003). DOI: 10.1080/0141159021000051424.
  • A. K. Jonscher, Dielectric Relaxation in Solids (Chelsea Dielectrics, London, UK, 1983).
  • E. J. Garboczi et al., Geometrical percolation threshold of overlapping ellipsoids, Phys. Rev. E. 52 (1), 819 (1995). DOI: 10.1103/PhysRevE.52.819.
  • D. Fu et al., PMN Relaxor: Dipole Glass or Nanodomain Ferroelectric, Advances in Ferroelectrics, Chapter 3 (InTech, Rijeka, Croatia, 2012), pp. 51–67.
  • T. Braun et al., Creep and relaxation dynamics of domain walls in periodically poled KTiOPO4, Phys. Rev. Lett. 94 (11), 117601 (2005). DOI: 10.1103/PhysRevLett.94.117601.
  • W. Kleemann, Universal domain wall dynamics in disordered ferroic materials, Annu. Rev. Mater. Res. 37 (1), 415 (2007). DOI: 10.1146/annurev.matsci.37.052506.084243.
  • X. Chen et al., Domain wall relaxation, creep, sliding, and switching in superferromagnetic discontinuous Co80Fe20/Al2O3 multilayers, Phys. Rev. Lett. 89 (13), 137203 (2002). DOI: 10.1103/PhysRevLett.89.137203.
  • T. Nattermann, V. Pokrovsky, and V. M. Vinokur, Hysteretic dynamics of domain walls at finite temperatures, Phys. Rev. Lett. 87 (19), 197005 (2001). DOI: 10.1103/PhysRevLett.87.197005.
  • G. Xu et al., Neutron elastic diffuse scattering study of PMN, Phys. Rev. B. 69 (6), 064112 (2004). DOI: 10.1103/PhysRevB.69.064112.
  • A. Koreeda et al., Fractal dynamics in a single crystal of a relaxor ferroelectric, Phys. Rev. Lett. 109 (19), 197601 (2012). DOI: 10.1103/PhysRevLett.109.197601.
  • H. Taniguchi, M. Itoh, and D. Fu, Raman scattering study of the soft mode in PMN, J. Raman Spectrosc. 42 (4), 706 (2011). DOI: 10.1002/jrs.2746.
  • B. Hehlen et al., Relaxor ferroelectrics: back to the single-soft-mode picture, Phys. Rev. Lett. 117 (15), 155501 (2016). DOI: 10.1103/PhysRevLett.117.155501.
  • Y. Imry and S. K. Ma, Random-field instability of the ordered state of continuous symmetry, Phys. Rev. Lett. 35 (21), 1399 (1975). DOI: 10.1103/PhysRevLett.35.1399.
  • W. Kleemann et al., Crossover from ferroelectric to relaxor and cluster glass in BaTi1−xZrxO3 (x = 0.25 – 0.35) studied by non-linear permittivity, Appl. Phys. Lett. 102 (23), 232907 (2013). DOI: 10.1063/1.4811089.
  • A. R. Akbarzadeh et al., Finite-temperature properties of Ba(Zr,Ti)O3 relaxors from first principles, Phys. Rev. Lett. 108 (25), 257601 (2012). DOI: 10.1103/PhysRevLett.108.257601.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.