996
Views
4
CrossRef citations to date
0
Altmetric
Articles

A simple recipe to calculate the thermal conductivity of anharmonic crystals: the case of SrTiO3

Pages 26-35 | Received 17 Jul 2018, Accepted 14 Aug 2019, Published online: 07 Jan 2020

References

  • J. Callaway, Model for lattice thermal conductivity at low temperatures, Phys. Rev. 113 (4), 1046 (1959). DOI: 10.1103/PhysRev.113.1046.
  • R. A. Guyer, and J. A. Krumhansl, Thermal conductivity, second sound, and phonon hydrodynamic phenomena in nonmetallic crystals, Phys. Rev. 148 (2), 778 (1966). DOI: 10.1103/PhysRev.148.778.
  • R. A. Guyer, and J. A. Krumhansl, Solution of the linearized phonon Boltzmann equation, Phys. Rev. 148 (2), 766 (1966). DOI: 10.1103/PhysRev.148.766.
  • M. Tachibana, T. Kolodiazhnyi, and E. Takayama-Muromachi, Thermal conductivity of perovskite ferroelectrics, Appl. Phys. Lett. 93 (9), 092902 (2008). DOI: 10.1063/1.2978072.
  • A. J. H. Mante, and J. Volger, Phonon transport in barium titanate, Phys. Lett. 24A, 139 (1967). DOI: 10.1016/0031-8914(71)90164-9.
  • B. Salce, J. L. Gravil, and L. A. Boatner, Disorder and thermal transport in undoped KTaO3, J. Phys. Condens. Matter 6, 4077 (1994). DOI: 10.1088/0953-8984/6/22/007.
  • H. H. Barrett, and M. G. Holland, Thermal conductivity in perovskites, Phys. Rev. B. 2 (8), 3441 (1970). DOI: 10.1103/PhysRevB.2.3441.
  • W. H. Huber, L. M. Hernandez, and A. M. Goldman, Electric field dependence of the thermal conductivity of quantum paraelectrics, Phys. Rev. B. 62 (13), 8588 (2000). DOI: 10.1103/PhysRevB.62.8588.
  • D. A. Ackerman et al., Glassy behavior of crystalline solids at low temperatures, Phys. Rev. B. 23 (8), 3886 (1981). DOI: 10.1103/PhysRevB.23.3886.
  • J. J. De Yoreo, R. O. Pohl, and G. Burns, Low-temperature thermal properties of ferroelectrics, Phys. Rev. B. 32 (9), 5780 (1985).
  • E. F. Steigmeier, Field effect on the Cochran modes in SrTiO3 and KTaO3, Phys. Rev. 168 (2), 523 (1968). DOI: 10.1103/PhysRev.168.523.
  • V. Martelli et al., Thermal transport and phonon hydrodynamics in strontium titanate, Phys. Rev. Lett. 120 (12), 125901 (2018).
  • S. R. Popuri et al., Glass-like thermal conductivity in SrTiO3 thermoelectrics induced by A-site vacancies, Soc. Chem. Adv. 4, 3370 (2014).
  • A. Smontara, J. C. Lasjaunias, and R. Maynard, Phonon Poiseuille flow in quasi-one-dimensional single crystals, Phys. Rev. Lett. 77 (27), 5397 (1996). DOI: 10.1103/PhysRevLett.77.5397.
  • R. A. Cowley, Lattice dynamics and phase transitions of strontium titanate, Phys. Rev. 134 (4A), A981 (1964).
  • G. Shirane, and Y. Yamada, Lattice-dynamical study of the 110°K phase transition in SrTiO3, Phys. Rev. 177 (2), 858 (1969). DOI: 10.1103/PhysRev.177.858.
  • H. Vogt, Refined treatment of the model of linearly coupled anharmonic oscillators and its application to the temperature dependence of the zone-center soft-mode frequencies of KTaO3 and SrTiO3, Phys. Rev., B Condens. Matter 51 (13), 8046 (1995). DOI: 10.1103/physrevb.51.8046.
  • K. A. Müller, and H. Burkard, SrTiO3: an intrinsic quantum paraelectric below 4 K, Phys. Rev. B. 19 (7), 3593 (1979). DOI: 10.1103/PhysRevB.19.3593.
  • Y. Yamada, and G. Shirane, Neutron scattering and nature of the soft optical phonon in SrTiO 3, J. Phys. Soc. Jpn. 26 (2), 396 (1969). DOI: 10.1143/JPSJ.26.396.
  • P. A. Fleury, J. F. Scott, and J. M. Worlock, Soft phonon modes and the 110°K phase transition in SrTiO3, Phys. Rev. Lett. 21 (1), 16 (1968). DOI: 10.1103/PhysRevLett.21.16.
  • T. Riste et al., Critical behaviour of SrTiO3 near the 105°K phase transition, Solid State Comm. 9 (17), 1455 (1971).
  • K. A. Müller, and W. Berlinger, Static critical exponents at structural phase transitions, Phys. Rev. Lett. 26 (1), 13 (1971). DOI: 10.1103/PhysRevLett.26.13.
  • M. Itoh et al., Ferroelectricity induced by oxygen isotope exchange in strontium titanate perovskite, Phys. Rev. Lett. 82 (17), 3540 (1999). DOI: 10.1103/PhysRevLett.82.3540.
  • A. Bussmann-Holder, H. Büttner, and A. R. Bishop, Stabilization of ferroelectricity in quantum paraelectrics by isotopic substitution, J. Phys. Condens. Matter 12, L115 (2000). DOI: 10.1088/0953-8984/12/6/108.
  • J. G. Bednorz, and K. A. Müller, Sr1−xCaxTiO3: an XY Quantum Ferroelectric with Transition to Randomness, Phys. Rev. Lett. 52 (25), 2289 (1984). DOI: 10.1103/PhysRevLett.52.2289.
  • L. Zhang et al., The cell volume effect in barium strontium titanate, Solid State Comm. 104 (5), 263 (1997). DOI: 10.1016/S0038-1098(97)00289-5.
  • D. Bäuerle et al., Soft modes in semiconducting SrTiO3: II. The ferroelectric mode, Z. Phys. B. Condens. Matter 38, 335 (1980). DOI: 10.1007/BF01315325.
  • A. Bussmann-Holder et al., A polarizability model for the ferroelectric mode in semiconducting SrTiO3, Z Phys. B. Condens. Matter 41 (4), 353 (1981). DOI: 10.1007/BF01307326.
  • X. Lin et al., Metallicity without quasi-particles in room-temperature strontium titanate, NPJ Quantum Mater. 2 (1), 1 (2017).
  • J. F. Schooley, W. R. Hosler, and M. L. Cohen, Superconductivity in semiconducting SrTiO3, Phys. Rev. Lett. 12 (17), 474 (1964). DOI: 10.1103/PhysRevLett.12.474.
  • C. Collignon et al., Superfluid density and carrier concentration across a superconducting dome: the case of strontium titanate, Phys. Rev. B. 96 (22), 224506 (2017).
  • G. Binnig et al., Two-band superconductivity in Nb-doped SrTiO3, Phys. Rev. Lett. 45 (16), 1352 (1980). DOI: 10.1103/PhysRevLett.45.1352.
  • X. Lin et al., S-wave superconductivity in optimally doped SrTi1−xNbxO3 unveiled by electron irradiation, Phys. Rev. B. 92 (17), 174504 (2015).
  • R. Migoni, H. Bilz, and D. Bäuerle, Origin of Raman scattering and ferroelectricity in oxidic perovskites, Phys. Rev. Lett. 37 (17), 1155 (1976). DOI: 10.1103/PhysRevLett.37.1155.
  • H. Bilz, G. Benedek, and A. Bussmann-Holder, Theory of ferroelectricity: the polarizability model, Phys. Rev. B Condens. Matter 35 (10), 4840 (1987). DOI: 10.1103/physrevb.35.4840.
  • A. Bussmann-Holder, The polarizability model for ferroelectricity in perovskite oxides, J. Phys. Condens. Matter 24 (27), 273202 (2012). DOI: 10.1088/0953-8984/24/27/273202.
  • A. Bussmann-Holder, H. Büttner, and A. Bishop, Polar-soft-mode-driven structural phase transition in SrTiO3, Phys. Rev. Lett. 99 (16), 167603 (2007).
  • A. Bussmann-Holder, Interplay of polarizability and ionicity in IV-VI compounds, Phys. Rev. B Condens. Matter 40 (17), 11639 (1989). DOI: 10.1103/physrevb.40.11639.
  • A. Bussmann-Holder, K. Roleder, and J.-H. Ko, What makes the difference in perovskite titanates?, J. Phys. Chem. Solids. 117, 148 (2018). DOI: 10.1016/j.jpcs.2018.02.025.
  • G. Shirane, and E. Sawaguchi, On the anomalous specific heat of lead titanate, Phys. Rev. 81 (3), 458 (1951). DOI: 10.1103/PhysRev.81.458.2.
  • G. Shirane et al., Soft ferroelectric modes in lead titanate, Phys. Rev. B. 2, 155 (1970). DOI: 10.1103/PhysRevB.2.155.
  • J. Harada, J. D. Axe, and G. Shirane, Neutron-scattering study of soft modes in cubic BaTiO3, Phys. Rev. B. 4 (1), 155 (1971). DOI: 10.1103/PhysRevB.4.155.
  • E. Courtens et al., New excitations in quantum paraelectrics, Phys. B Condens. Matter 219-220, 577 (1996). doi:10.1016/0921-4526(95)00817-9.
  • A. Bussmann-Holder, Electron-phonon-interaction-driven anharmonic mode-mode coupling in ferroelectrics: the origin of acoustic-mode anomalies, Phys. Rev. B. 56 (17), 10762 (1997). DOI: 10.1103/PhysRevB.56.10762.
  • J. L. Servoin et al., ed. Devrees, J., Recent developments in condensed matter physics. In Low-Dimensional Systems, Phase Changes and Experimental Techniques (Plenum Press, New York, 1982), Vol. 4, p. 157.
  • A. Bussmann -Holder, K. Roleder, and J.-H. Ko, Instabilities in the ferro- and antiferroelectric lead perovskites driven by transition metal ion mass: from PbTiO3 via PbZrO3 to PbHfO3, J. Phys. Condens. Matter 26 (27), 275402 (2014). DOI: 10.1088/0953-8984/26/27/275402.
  • J.-H. Ko et al., Mode softening, precursor phenomena, and intermediate phases in PbZrO3, Phys. Rev. B. 87 (18), 184110 (2013).
  • M. Stachiotti et al., Crossover from a displacive to an order-disorder transition in the nonlinear-polarizability model, Phys. Rev. B Condens. Matter 47 (5), 2473 (1993). DOI: 10.1103/physrevb.47.2473.
  • J. Petzelt et al., Dielectric, infrared, and Raman response of undoped SrTiO3 ceramics: evidence of polar grain boundaries, Phys. Rev. B. 64 (18), 184111 (2001).
  • J. L. Servoin, Y. Luspin, and F. Gervais, Infrared dispersion in SrTiO3 at high temperature, Phys. Rev. B. 22 (11), 5501 (1980). DOI: 10.1103/PhysRevB.22.5501.
  • G. Lang et al., Anharmonic line shift and linewidth of the Raman mode in covalent semiconductors, Phys. Rev. B. 59 (9), 6182 (1999). DOI: 10.1103/PhysRevB.59.6182.
  • A. Bussmann-Holder et al., Relation between structural instabilities in EuTiO3 and SrTiO3, Phys. Rev. B. 83 (21), 212102 (2011).
  • A. Debernardi, S. Baroni, and E. Molinari, Anharmonic phonon lifetimes in semiconductors from density-functional perturbation theory, Phys. Rev. Lett. 75 (9), 1819 (1995). DOI: 10.1103/PhysRevLett.75.1819.
  • D. A. Broido et al., Intrinsic lattice thermal conductivity of semiconductors from first principles, Appl. Phys. Lett. 91 (23), 231922 (2007). DOI: 10.1063/1.2822891.
  • M. Omini, and A. Sparavigna, Beyond the isotropic-model approximation in the theory of thermal conductivity, Phys. Rev. B. 53 (14), 9064 (1996).
  • M. Omini, and A. Sparavigna, Heat transport in dielectric solids with diamond structure, Nuovo Cimento D. 19, 1537 (1997).
  • D. A. Broido, A. Ward, and N. Mingo, Lattice thermal conductivity of silicon from empirical interatomic potentials, Phys. Rev. B. 72 (1), 014308 (2005).
  • A. Bussmann-Holder, to be published.