267
Views
7
CrossRef citations to date
0
Altmetric
Articles

Effects of cooling rate on the electrical properties of Pb-free BF-BT ceramics

, , , , , , , , & show all
Pages 76-82 | Received 17 Jul 2018, Accepted 02 Oct 2019, Published online: 07 Jan 2020

References

  • J. Rödel et al., Transferring lead-free piezoelectric ceramics into application, J. Eur. Ceram. Soc. 35 (6), 1659 (2015). DOI: 10.1016/j.jeurceramsoc.2014.12.013.
  • G. H. Ryu et al., Lead-free high performance Bi(Zn0.5Ti0.5)O3-modified BiFeO3-BaTiO3 piezoceramics, J. Eur. Ceram. Soc. 38 (13), 4414 (2018). DOI: 10.1016/j.jeurceramsoc.2018.05.032.
  • J. U. Rahman et al., Effect of sintering temperature on the electromechanical properties of 0.945Bi0.5Na0.5TiO3-0.055BaZrO3 ceramics, J. Korean Phys. Soc. 66 (7), 1072 (2015). DOI: 10.3938/jkps.66.1072.
  • R. A. Malik et al., Thermal-stability of electric field-induced strain and energy storage density in Nb-doped BNKT-ST piezoceramics, J. Eur. Ceram. Soc. 38 (6), 2511 (2018). DOI: 10.1016/j.jeurceramsoc.2018.01.010.
  • R. A. Malik et al., Temperature invariant high dielectric properties over the range 200 °C–500 °C in BiFeO3 based ceramics, J. Eur. Ceram. Soc. 38 (4), 2259 (2018). DOI: 10.1016/j.jeurceramsoc.2017.11.049.
  • R. A. Malik et al., Enhanced electromechanical properties of (1-x) BiFeO3–BaTiO3–xLiNbO3 ceramics by quenching process, Ceram. Int. 43, S198 (2017). DOI: 10.1016/j.ceramint.2017.05.298.
  • I. Calisir et al., Optimisation of functional properties in lead-free BiFeO3–BaTiO3 ceramics through La3+ substitution strategy, J. Mater. Chem. A. 6 (13), 5378 (2018). DOI: 10.1039/C7TA09497C.
  • F. Akram, R.A. Malik, T.K. Song et al., Thermally-stable high dielectric properties of (1−x)(0.65Bi1.05FeO3−0.35BaTiO3)−xBiGaO3, J. Euro. Ceram. Soc. 39, 2304 (2019).
  • M. H. Lee, D. J. Kim, J. S. Park et al., High‐performance lead‐free piezoceramics with high curie temperatures, Adv. Mater. 27, 6976–6982 (2015). DOI: 10.1002/adma.201502424.
  • Y. Qin et al., The effects of quenching on electrical properties, and leakage behaviors of 0.67BiFeO3–0.33BaTiO3 solid solutions, J. Mater. Sci. Mater. Electron. 29 (9), 7311 (2018). DOI: 10.1007/s10854-018-8720-1.
  • Z. Cen et al., Remarkably high-temperature stability of Bi(Fe1−xAlx)O3–BaTiO3 solid solution with near-zero temperature coefficient of piezoelectric properties, J. Am. Ceram. Soc. 96 (7), 2252 (2013). DOI: 10.1111/jace.12326.
  • S. Kim et al., Revealing the role of heat treatment in enhancement of electrical properties of lead-free piezoelectric ceramics, J. Appl. Phys. 122 (1), 014103 (2017). DOI: 10.1063/1.4991492.
  • F. Akram et al., Synthesis and electromechanical properties of LiTaO3-modified BiFeO3–BaTiO3 piezoceramics, Ceram. Int. 43, S209 (2017). DOI: 10.1016/j.ceramint.2017.05.303.
  • S.A. Khan, R.A. Malik, F. Akram et al., Synthesis and electrical properties of 0.65Bi1.05Fe1-xGaxO3–0.35BaTiO3 piezoceramics by air quenching process, J. Electroceramics, 41, 60–66 (2018). DOI: 10.1007/s10832-018-0153-y.
  • F. Akram, R.A. Malik, S.A. Khan et al., Electromechanical properties of ternary BiFeO3 − 0.35BaTiO3–BiGaO3 piezoelectric ceramics, J. Electroceramics, 41 93–98 (2018). DOI: 10.1007/s10832-018-0169-3
  • T. Rojac et al., Strong ferroelectric domain-wall pinning in BiFeO3 ceramics, J. Appl. Phys. 108 (7), 074107 (2010). DOI: 10.1063/1.3490249.
  • T. Rojac et al., BiFeO3 ceramics: processing, electrical, and electromechanical properties, J. Am. Ceram. Soc. 97 (7), 1993 (2014). DOI: 10.1111/jace.12982.
  • L. Cao et al., Effect of poling on polarization alignment, dielectric behavior, and piezoelectricity development in polycrystalline BiFeO3–BaTiO3 ceramics, Phys. Status Solidi A. 213 (1), 52 (2016). DOI: 10.1002/pssa.201532373.
  • C. Zhou and X. Liu, Dielectric and piezoelectric properties of Bi0.5Na0.5TiO3–BaNb2O6 lead-free piezoelectric ceramics, J. Mater. Sci. Mater. Electron. 19 (1), 29 (2008). DOI: 10.1007/s10854-007-9223-7.
  • C. Zhou et al., Effects of Bi excess on the structure and electrical properties of high-temperature BiFeO3–BaTiO3 piezoelectric ceramics, J. Mater. Sci. Mater. Electron. 24 (5), 1685 (2013). DOI: 10.1007/s10854-012-0996-y.
  • A. Herabut and A. Safari, Processing and electromechanical properties of (Bi0.5Na0.5)(1 − 1.5x)LaxTiO3 ceramics, J. Am. Ceram. Soc. 80 (11), 2954 (1997). DOI: 10.1111/j.1151-2916.1997.tb03219.x.
  • F. Wang et al., Large strain response in the ternary Bi0.5Na0.5TiO3–BaTiO3–SrTiO3 solid solutions, J. Am. Ceram. Soc. 95 (6), 1955 (2012). DOI: 10.1111/j.1551-2916.2012.05119.x.
  • S.A. Khan, F. Akram, R.A. Malik, et al., Piezoelectric and ferroelectric properties of lead-free Ga-modified 0.65BiFeO3–0.35BaTiO3 ceramics by water quenching process, Ferroelectrics. 541, 54–60 (2019). DOI: 10.1080/00150193.2019.1574642.
  • S.A. Khan, F. Akram, J. Bae, et al., Enhancing Piezoelectric Coefficient with Relative High Curie Temperature in BiAlO3-modified BiFeO3–BaTiO3 Lead-free Ceramics, Solid State Sciences, 98, 106040 (2019). DOI: 10.1016/j.solidstatesciences.2019.106040.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.