52
Views
3
CrossRef citations to date
0
Altmetric
Articles

Two-step sintering affecting the escaping of Na and K and its impact on dielectric properties and morphology of lead-free Na0.92K0.08NbO3 ceramics

&
Pages 187-196 | Received 24 Jun 2019, Accepted 09 Sep 2019, Published online: 25 Feb 2020

References

  • G. A. Samara, Effects of pressure on the dielectric properties and phase transitions of the alkali metal tantalates and niobates, Ferroelectrics 73 (1), 145 (1987). DOI: 10.1080/00150198708227914.
  • B. Jaffe, W. R. Cook, and H. Jaffe, Piezoelectric Ceramics, v. 3, ix edition (New York: Academic Press, 1971).
  • Y. Lu et al., Phase transitional behavior and piezoelectric properties of the orthorhombic phase of Pb(Mg1/3Nb2/3)O3–PbTiO3 single crystals. Appl. Phys. Lett. 78 (20), 3109 (2001). DOI: 10.1063/1.1372360.
  • W. Ren, S. F. Liu, and B. K. Mukherjee, Piezoelectric properties and phase transitions of 001S-oriented Pb(Zn1/3Nb2/3)O3–PbTiO3 single crystals. Appl. Phys. Lett. 80 (17), 3174 (2002). DOI: 10.1063/1.1474600.
  • S. E. Park, and T. R. Shrout, Ultrahigh strain and piezoelectric behavior in relaxor based ferroelectric single crystals. J. Appl. Phys. 82 (4), 1804 (1997). DOI: 10.1063/1.365983.
  • Y. Saito et al., Lead-free piezoceramics. Nature (London) 432 (7013), 84 (2004). DOI: 10.1038/nature03028.
  • Y. Guo, K. Kakimoto, and H. Ohsato, Phase transitional behavior and piezoelectric properties of (Na0.5K0.5)NbO3–LiNbO3(Na0.5K0.5)NbO3–LiNbO3 ceramics. Appl. Phys. Lett. 85 (18), 4121 (2004). DOI: 10.1063/1.1813636.
  • M. Matsubara, K. Kikuta, and S. Hirano, Piezoelectric properties of (K0.5Na0.5) (Nb1−xTax)O3−K5.4CuTa10O29 ceramics. J. Appl. Phys. 97 (11), 114105 (2005). DOI: 10.1063/1.1926396.
  • Y. Guo, K. Kakimoto, and H. Ohsato, (Na0.5K0.5)NbO3–LiTaO3 lead-free piezoelectric ceramics. Mater. Lett. 59 (2–3), 241 (2005). DOI: 10.1016/j.matlet.2004.07.057.
  • E. Hollenstein et al., Piezoelectric properties of Li- and Ta-modified (K0.5Na0.5)NbO3 ceramics. Appl. Phys. Lett. 87 (18), 182905 (2005). DOI: 10.1063/1.2123387.
  • H. Y. Park et al., Microstructure and piezoelectric properties of 0.95(Na0.5K0.5) NbO3–0.05BaTiO30.95 (Na0.5K0.5) NbO30.05BaTiO3 ceramics. Appl. Phys. Lett. 89 (6), 062906 (2006). DOI: 10.1063/1.2335816.
  • L. Egerton, and D. M. Dillon, Piezoelectric and dielectric properties of ceramics in the system potassium-sodium niobate. J. Am. Ceram. Soc. 42 (9), 438 (1959). DOI: 10.1111/j.1151-2916.1959.tb12971.x.
  • Y. J. Dai, X. W. Zhang, and K. P. Chen, Morphotropic phase boundary and electrical properties of K1-xNaxNbO3 lead-free ceramics. Appl. Phys. Lett. 94 (4), 042905 (2009). DOI: 10.1063/1.3076105.
  • L. Wu et al., Influence of compositional ratio K/Na on physical properties in (KxNa1-x)NbO3 ceramics. J. Appl. Phys. 103 (8), 084116 (2008). DOI: 10.1063/1.2907866.
  • V. J. Tennery, and K. W. Hang, Thermal and x-ray diffraction studies of the NaNbO3-KNbO3 system. J. Appl. Phys. 39 (10), 4749 (1968). DOI: 10.1063/1.1655833.
  • R. E. Jaeger, and L. Egerton, Hot pressing of potassium-sodium niobates. J. Am. Ceram. Soc. 45 (5), 209 (1962). DOI: 10.1111/j.1151-2916.1962.tb11127.x.
  • B. P. Zhang et al., Compositional dependence of piezoelectric properties in NaxK1-xNbO3 lead-free ceramics prepared by spark plasma sintering. J. Am. Ceram. Soc. 89 (5), 1605 (2006). DOI: 10.1111/j.1551-2916.2006.00960.x.
  • D. W. Baker et al., Structural study of KxNa1-xNbO3 (KNN) for compositions in the range x = 0.24–0.36. Acta Crystallogr. B: Struct. Sci. B65, 22 (2009). DOI: 10.1107/S0108768108037361.
  • N. Zhang et al., Structures of K0.05Na0.95NbO3 (50–300 K) and K0.30Na0.70NbO3 (100–200 K). Acta Crystallogr. B: Struct. Sci. B65, 291 (2009). DOI: 10.1107/S0108768109011057.
  • X.-H. Wang et al., Bulk dense nanocrystalline BaTiO3 ceramics prepared by novel pressureless two-step sintering method. J. Electroceram. 21 (1–4), 230 (2008). DOI: 10.1007/s10832-007-9143-1.
  • N. Lartcumfu et al., Fabrication of sodium potassium niobate ceramics by two step sintering assisted molten salts synthesis. Ferroelectrics 456 (1), 14 (2013). DOI: 10.1080/00150193.2013.846171.
  • J. G. Fisher et al., High-temperature X-ray diffraction and Raman spectroscopy study of (K0.5Na0.5)NbO3 ceramics sintered in oxidizing and reducing atmospheres. Mater. Chem. Phys. 120, 263 (2010). DOI: 10.1016/j.matchemphys.2009.11.001.
  • C. N. W. Darlington, and H. D. Megaw, The low-temperature phase transition of sodium niobate and the structure of the low-temperature phase. Acta Crystallogr. B: Struct. Sci. B29, 2171 (1973). DOI: 10.1107/S0567740873006308.
  • R. Zuo et al., Sintering and electrical properties of lead-free Na0.5K0.5NbO3 piezoelectric ceramics. J. Am. Ceram. Soc. 89 (6), 2010 (2006). DOI: 10.1111/j.1551-2916.2006.00991.x.
  • Q. Xu et al., Effect of sintering temperature on dielectric properties of Ba0.6Sr0.4TiO3–MgO composite ceramics prepared from fine constituent powders. Mater. Des. 32 (3), 1200 (2011). DOI: 10.1016/j.matdes.2010.10.018.
  • S. Wada et al., Phase diagram and microstructure analysis of barium titanate–potassium niobate system piezoelectric ceramics. KEM 421–422, 34 (2009). DOI: 10.4028/www.scientific.net/KEM.421-422.34.
  • B. Malic et al., Sintering of lead-free piezoelectric sodium potassium niobate ceramics. Materials 8, 8117 (2015). DOI: 10.3390/ma8125449.
  • I. W. Chen, and X. H. Wang, Sintering dense nanocrystalline ceramics without final-stage grain growth. Nature 404 (6774), 168 (2000). DOI: 10.1038/35004548.
  • S. Narayana Murty, K. Umakantham, and A. Bhanumathi, Ferroelectric behavior of Lanthanum doped (NaK)NbO3 ceramics. Ferroelectrics 82 (1), 141 (1988). DOI: 10.1080/00150198808201348.
  • L. E. Cross, Electric double hysteresis in (KxNa1-x)NbO3 single crystals. Nature 181 (4603), 178 (1958). DOI: 10.1038/181178a0.
  • G. H. Haertling, Properties of hot-pressed ferroelectric alkali niobate ceramics. J. Am. Ceram. Soc. 50 (6), 329 (1967). DOI: 10.1111/j.1151-2916.1967.tb15121.x.
  • A. S. Kandari, V. Lingwal, and N. S. Panwar, Morphotropic region in Na1-xKxNbO3, between x = 0.17 and 0.18. Ferroelectrics 396 (1), 18 (2010). DOI: 10.1080/00150191003791683.
  • V. Lingwal, and N. S. Panwar, Morphotropic phase transitions in mixed sodium-potassium niobate system. Ferroelectrics 300 (1), 3 (2004). DOI: 10.1080/00150190490442146.
  • E. V. Bursyan, Nonlinear Crystal-Barium Titanate (Moskva: Nauka Press, 1974).
  • S. Singh, J. Negi, and N. S. Panwar, Dielectric properties of Na1−xKxNbO3, near x = 0.5 morphotropic phase region. J. Phys. Chem. Solids 123, 311 (2018). DOI: 10.1016/j.jpcs.2018.08.018.
  • H. Chen et al., The size effect of Ba0.6Sr0.4TiO3, thin films on the ferroelectric properties. Appl. Surf. Sci. 252 (12), 4171 (2006). DOI: 10.1016/j.apsusc.2005.06.027.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.