156
Views
5
CrossRef citations to date
0
Altmetric
Articles

Morphological and structural properties of barium strontium titanate nanopowders synthesized via a sol-gel method

&
Pages 30-37 | Received 21 Oct 2018, Accepted 29 Jul 2019, Published online: 25 Feb 2020

References

  • J. H. Jeon, Y. D. Hahn, and H. D. Kim, Microstructure and dielectric properties of barium–strontium titanate with a functionally graded structure, J. Euro. Ceram. Soc. 21 (10–11), 1653 (2001). DOI: 10.1016/S0955-2219(01)00085-1.
  • K. A. Razak et al., Structural and dielectric properties of barium strontium titanate produced by high temperature hydrothermal method, J. Alloys Compd. 449 (1–2), 19 (2008). DOI: 10.1016/j.jallcom.2006.02.093.
  • M. W. Cole et al., Low dielectric loss and enhanced tunability of Ba0.6Sr0.4TiO3 based thin films via material compositional design and optimized film processing methods, J. Appl. Phys. 23, 9218 (2003). DOI: 10.1063/1.1569392.
  • Y. Bian, H. Wang, and J. Zhai, Low-dielectric-loss barium strontium titanate thin films with MgO buffer layer for tunable microwave devices, J. Elec. Mater. 42 (10), 2926 (2013). DOI: 10.1007/s11664-013-2673-1.
  • J. F. Scott et al., Dielectric breakdown in high-ε films for ULSI DRAMs: II. barium-strontium titanate ceramics, Integr. Ferroelectr. 4 (1), 61 (1994). DOI: 10.1080/10584589408018661.
  • F. Zimmermann et al., Investigation of barium strontium titanate thick films for tunable phase shifters, J. Euro. Ceram. Soc. 21 (10–11), 2019 (2001). DOI: 10.1016/S0955-2219(01)00164-9.
  • T. S. Kalkur et al., Low voltage tunable and band pass filters using barium strontium titanate parallel plate capacitors, Integr. Ferroelectr. 112 (1), 1 (2010). DOI: 10.1080/10584587.2009.484656.
  • Y. H. Huang et al., Enhanced energy storage properties of barium strontium titanate ceramics prepared by sol-gel method and spark plasma sintering, J. Alloy. Compd. 701, 439 (2017). DOI: 10.1016/j.jallcom.2017.01.150.
  • L. Zhou, P. M. Vilarinho, and J. L. Baptista, Dependence of the structure and dielectric properties of Ba1-xSrxTiO3 ceramics solid solution on raw material processing, J. Euro. Ceram. Soc. 19 (11), 2015 (1999). DOI: 10.1016/S0955-2219(99)00010-2.
  • B. Su et al., Processing effect on the microstructure and dielectric properties of barium strontium titanate (BST) ceramics, J. Electroceram. 9 (2), 111 (2002).
  • G. Caruntu et al., Annealing effects on the crystallite size and dielectric properties of ultrafine Ba1–xSrxTiO3 powders synthesized through an oxalate-complex precursor, J. Mater. Chem. 16 (8), 752 (2006). DOI: 10.1039/B506578J.
  • J. Chen, M. C. Che, and F. Yan, Synthesis of barium strontium titanate nanopowders by microwave hydrothermal method, Adv. Appl. Ceram. 114 (6), 344 (2015). DOI: 10.1179/1743676115Y.0000000011.
  • C. Baek et al., Hydrothermal synthesis and dielectric properties of Ba1–xSrxTiO3 nanoparticles with enhanced uniformity, J. Nanosci. Nanotechnol. 16 (11), 11652 (2016). DOI: 10.1166/jnn.2016.13568.
  • S. Thountom, C. Thongchanthep, and R. Srijaroen, The effect of the firing conditions on the properties of barium strontium titanate powders prepared by sol-gel combustion method using citric acid as fuel, Ferroelectr. 491 (1), 65 (2016). DOI: 10.1080/00150193.2015.1071141.
  • C. F. Kao, and W. D. Yang, Preparation of barium strontium titanate powder from citrate precursor, Appl. Organometal. Chem. 13 (5), 383 (1999). DOI: 10.1002/(SICI)1099-0739(199905)13:5<383::AID-AOC836>3.0.CO;2-P.
  • A. Ioachim et al., Barium strontium titanate-based perovskite materials for microwave applications, Prog. Solid State Chem. 35 (2–4), 513 (2007). DOI: 10.1016/j.progsolidstchem.2007.01.017.
  • M. M. Rashad, A. O. Turky, and A. T. Kandil, Optical and electrical properties of Ba1–xSrxTiO3 nanopowders at different Sr2+ ion content, J. Mater. Sci: Mater. Electron. 24, 3284 (2013). DOI: 10.1007/s10854-013-1244-9.
  • C. Mao, X. Dong, and T. Zeng, Synthesis and characterization of nanocrystalline barium strontium titanate powders prepared by citrate precursor method, Mater. Lett. 61 (8–9), 1633 (2007). DOI: 10.1016/j.matlet.2006.07.089.
  • H. Xu, and L. Gao, Hydrothermal synthesis of high-purity BaTiO3 powders: control of powder phase and size, sintering density, and dielectric properties, Mater. Lett. 58 (10), 1582 (2004). DOI: 10.1016/j.matlet.2003.10.030.
  • X. Wei et al., Composition and shape control of single-crystalline Ba1–xSrxTiO3 (x = 0–1) nanocrystal via a solvothermal route, J. Crystal Growth. 310 (18), 4132 (2008). DOI: 10.1016/j.jcrysgro.2008.04.039.
  • V. Somani, and S. J. Kalita, Synthesis and characterization of nanocrystalline barium strontium titanate powder via sol-gel processing, J. Electroceram. 18 (1–2), 57 (2007). DOI: 10.1007/s10832-007-9008-7.
  • H. Shibashi, H. Matsuda, and M. Kuwabara, Low-temperature preparation of (Ba,Sr)TiO3 perovskite phase by sol-gel method, J. Sol-Gel Sci. Technol. 16, 129 (1999).
  • S. Komarneni, I. R. Abothu, and A. V. Prasada Rao, Sol-gel processing of some electroceramic powders, J. Sol-Gel Sci. Technol. 15 (3), 263 (1999). DOI: 10.1023/A:1008793126735.
  • S. B. Herner et al., The effect of various dopants on the dielectric properties of barium strontium titanate, Mater. Lett. 15 (5–6), 317 (1993). DOI: 10.1016/0167-577X(93)90087-E.
  • J. W. Liou, and B. S. Chiou, Effect of direct-current on the dielectric properties of barium strontium titanate, J. Am. Ceram. Soc. 80 (12), 3093 (2005). DOI: 10.1111/j.1151-2916.1997.tb03237.x.
  • D. Kothandan, R. J. Kumar, and K. Chandra Babu Naidu, Barium titanate microsphere by low temperature hydrothermal method: studies on structural, morphological, and optical properties, J. Asian Ceram. Soc. 6 (1), 1 (2018). DOI: 10.1080/21870764.2018.1439607.
  • H. Irfan, K. M. Racik, and S. Anand, Microstructural evaluation of CoAl2O4 nanoparticles by Williamson–Hall and size–strain plot methods, J. Asian Ceram. Soc. 6 (1), 54 (2018). DOI: 10.1080/21870764.2018.1439606.
  • D. S. Jung et al., Morphologies and crystal structures of nano-sized Ba1–xSrxTiO3 primary particles prepared by flame spray pyrolysis, Mater. Res. Bull. 43 (7), 1789 (2008). DOI: 10.1016/j.materresbull.2007.07.011.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.