64
Views
0
CrossRef citations to date
0
Altmetric
Articles

Effect of PMN modification on the structural, microstructural, dielectric and ferroelectric properties of BT ceramics

&
Pages 56-66 | Received 13 Jan 2019, Accepted 05 Sep 2019, Published online: 25 Feb 2020

References

  • S. K. Barik, R. N. P. Choudhary, and A. K. Singh, Ac impedance spectroscopy and conductivity studies of Ba0.8Sr0.2TiO3 ceramics, Adv. Mat. Lett. 2, 419 (2011).
  • B. K. Barick et al., Impedance and Raman spectroscopic studies of (Na0.5Bi0.5)TiO3, J. Phys. D: Appl. Phys. 44(35), 355402 (2011). DOI: 10.1088/0022-3727/44/35/355402.
  • X. N. Zhu, W. Zhang, and X. M. Chen, Enhanced dielectric and ferroelectric characteristics in Ca-modified BaTiO3 ceramics, AIP Adv. 3(8), 082125 (2013).
  • C. M. Sonia, and P. Kumar, Microwave sintered sol-gel derived BaTiO3 and Ba0.95La0.05TiO3 ceramic samples for capacitor applications, Ceram. Int. 42, 10587 (2016).
  • J. Suchanicz et al., Effect of PMN addition on the structural, dielectric and ferroelectric properties of BT ceramics, Ferroelectrics. 497(1), 100 (2016). DOI: 10.1080/00150193.2016.1164503.
  • X. Yang et al., Colossal dielectric performance of pure barium titanate ceramics consolidated by spark plasma sintering, RSC Adv. 6(79), 75422 (2016). DOI: 10.1039/C6RA14741K.
  • F. D. Morrison, D. C. Sinclair, and A. R. West, Characterization of lanthanum-doped barium titanate ceramics using impedance spectroscopy, J. Am. Ceram. Soc. 84(3), 531 (2001). DOI: 10.1111/j.1151-2916.2001.tb00694.x.
  • X. Chen et al., Thermally Stable BaTiO3-Bi(Mg2/3Nb1/3)O3 solid solution with high relative permittivity in a broad temperature usage range, J. Am. Ceram. Soc. 98(3), 804 (2015).
  • A. Rani, J. Kolte, and P. Gopalan, Phase formation, microstructure, electrical and magnetic properties of Mn substituted barium titanate, Ceram. Int. 41(10), 14057 (2015). DOI: 10.1016/j.ceramint.2015.07.023.
  • M. Singh et al., Synthesis and characterization of perovskite barium titanate thin film and its application as LPG sensor, Sensors and Actuators B: Chemical. 241, 1170 (2017). DOI: 10.1016/j.snb.2016.10.018.
  • P. Kumar et al., Study of the structural and electrical properties of PMNT 68/32 ceramic prepared by a sol–gel process, Phase Transitions. 78(4), 329 (2005). DOI: 10.1080/10241220500046083.
  • J. Suchanicz et al., PbMg1/3Nb2/3O3-doping effects on structural, thermal, Raman, dielectric and ferroelectric properties of BaTiO3 ceramics, J. Eur. Ceram. Soc. 35(6), 1777 (2015). DOI: 10.1016/j.jeurceramsoc.2014.12.019.
  • A. Bhakar et al., Effect of processing parameters on microstructural properties of lead magnesium niobates, Acta Crystallogr. B Struct. Sci. Cryst. Eng. Mater. 73(6), 1095 (2017). DOI: 10.1107/S2052520617012872.
  • Y.-C. Liou, and J.-H. Chen, PMN ceramics produced by a simplified columbite route, Ceram. Int. 30(1), 17 (2004). DOI: 10.1016/S0272-8842(03)00056-7.
  • S. Prosandeev et al., Condensation of the atomic relaxation vibrations in lead-magnesium-niobate at T = T*, J. Appl. Phys. 114(12), 124103 (2013). DOI: 10.1063/1.4821772.
  • S. Ananta, and N. W. Thomas, Fabrication of PMN and PFN ceramics by a two-stage sintering technique, J. Eur. Ceram. Soc. 19(16), 2917 (1999). DOI: 10.1016/S0955-2219(99)00062-X.
  • A. A. Cavalheiro et al., (1-x)PMN-xPT ceramics prepared by conventional and modified columbite route: effect on electrical properties, Ferroelectrics. 331(1), 121 (2006). DOI: 10.1080/00150190600737305.
  • G. Srivastava, M. Maglione, and A. M. Umarji, The study of dielectric, pyroelectric and piezoelectric properties on hot pressed PZT-PMN systems, AIP Adv. 2(4), 042170 (2012). DOI: 10.1063/1.4769889.
  • P. Kumar et al., Study of lead magnesium niobate–lead titanate ceramics for piezo-actuator applications, J. Appl. Phys. 43(4A), 1501 (2004). DOI: 10.1143/JJAP.43.1501.
  • J. Suchanicz et al., Electrical transport in low-lead (1-x)BaTiO3–xPbMg1/3Nb2/3O3 ceramics, J. Adv. Ceram. 6(3), 207 (2017). DOI: 10.1007/s40145-017-0232-6.
  • P. Sharma et al., Structural and dielectric properties of substituted barium titanate ceramics for capacitor applications, Ceram. Int. 41(10), 13425 (2015). DOI: 10.1016/j.ceramint.2015.07.131.
  • R. R. Negi, and P. Kumar, Comparative studies of BT, LCNO and 0.94BT-0.06LCNO ceramics for capacitor applications, Ceram. Int. 44(12), 14311 (2018). DOI: 10.1016/j.ceramint.2018.05.037.
  • M. Chandrasekhar, and P. Kumar, Synthesis and characterization of BNT-BT and BNT-BT-KNN ceramics for actuator and energy storage applications, Ceram. Int. 41(4), 5574 (2015). DOI: 10.1016/j.ceramint.2014.12.136.
  • Y. Park, and H.-G. Kim, Internal stress effect on the temperature dependence of the dielectric and lattice constant in Sm-doped BaTiO3 ceramics, Jpn. J. Appl. Phys. 36(Part 1, No. 6A), 3558 (1997). DOI: 10.1143/JJAP.36.3558.
  • C. Rayssi et al., Frequency and temperature-dependence of dielectric permittivity and electric modulus studies of the solid solution Ca0.85Er0.1Ti1−xCo4x/3O3 (0 ≤ x ≤ 0.1), Rsc Adv. 8(31), 17139 (2018). DOI: 10.1039/C8RA00794B.
  • P. Kumar et al., Effect of Sm on dielectric, ferroelectric and piezoelectric properties of BPTNZ system, Physica B. 426, 112 (2013). DOI: 10.1016/j.physb.2013.05.038.
  • J. Fuentes et al., Dielectric and piezoelectric properties of the KNN ceramic compound doped with Li, La and Ta, Appl. Phys. A. 118(2), 709 (2015). DOI: 10.1007/s00339-014-8783-7.
  • S. Swain et al., Dielectric and ferroelectric study of KNN modified NBT ceramics synthesized by microwave processing technique, Ceram. Int. 39, 3205 (2013).
  • B. Jaffe, W. Cook, and H. Jaffe, Piezoelectric Ceramics London: Academic Press; 1971.
  • T. F. Zhang et al., Energy-storage properties and high-temperature dielectric relaxation behaviors of relaxor ferroelectric Pb (Mg1/3Nb2/3) O3–PbTiO3 ceramics, J. Phys. D: Appl. Phys. 49(9), 095302 (2016). DOI: 10.1088/0022-3727/49/9/095302.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.