468
Views
0
CrossRef citations to date
0
Altmetric
Articles

A comparative analysis on wave characteristics of viscoelastic rods coated with piezoelectric layer

Pages 67-88 | Received 26 Dec 2018, Accepted 05 Sep 2019, Published online: 25 Feb 2020

References

  • Q. Wang, Axi-symmetric wave propagation in a cylinder coated with a piezoelectric layer, Int. J. Solids Struct. 39(11), 3023 (2002). DOI: 10.1016/S0020-7683(02)00233-0.
  • Q. Wang, Wave propagation in a piezoelectric coupled cylindrical shell, Comput. Mech., Proc.: New Front. New Millenn. 1–2, 1679 (2001).
  • Q. Wang and K. M. Liew, Analysis of wave propagation in piezoelectric coupled cylinder affected by transverse shear and rotary inertia, Int. J. Solids Struct. 40(24), 6653 (2003). DOI: 10.1016/S0020-7683(03)00422-0.
  • Q. Wang and V. K. Varadan, Longitudinal wave propagation in piezoelectric coupled rods, Smart Mater. Struct. 11(1), 48 (2002). DOI: 10.1088/0964-1726/11/1/305.
  • H. H. Hilton, J. R. Vinson, and S. Yi, Anisotropic piezo-electro-thermo viscoelastic theory with applications to composites, in: Proceedings of the 11th International Conference on Composite Materials (ICCM-11). VI, Australian Composites Society, Gold Coast, Australia, 1997, p. 4881.
  • C. E. Beldica, H. H. Hilton, and S. Yi, Viscoelastic damping and piezoelectric control of structures subjected to aerodynamic noise, in: Proceedings of the Fourth AIAA/CEAS Aeroacoustics Conference, Toulouse, France, vol. 2, AIAA Paper 98-2343, 1998, p. 805.
  • C. E. Beldica, H. H. Hilton, and S. Yi, A sensitivity study of viscoelastic, structural and piezoelectric damping for flutter control, in: Proceedings 39th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and Materials Conference, Chicago, USA, AIAA Paper 98–1848, 1998, p. 21304.
  • C. E. Beldica, H. H. Hilton, and S. Yi, Viscoelastic, structural and piezoelectric damping for flutter control: A sensitivity analysis, in: Proceedings DoD High Performance Computing Modernization Program 1998 Users Group Conference, Houston, TX, 1998, pp. 57–71.
  • C. E. Beldica, H. H. Hilton, and S. Yi, Viscoelastic damping and piezoelectric control of creep divergence and flutter – analytical and computational simulations, Proceedings First ARO Workshop on Novel Structural Damping Concepts and Materials VPI, edited by Inman D, Reinhold, Blacksburg, VA, 1998, pp. 88–117.
  • C. E. Beldica and H. H. Hilton, Piezoelectric and viscoelastic control of lifting surface aerodynamic derivatives and aileron reversal, in: Proceedings of the 40th AIAA/ASME/AHS/ASC Structures, Dynamics Structures & Materials Conference, AIAA Paper No. 99–1423, Vol. 33, 1999, pp. 1869–1879.
  • C. E. Beldica and H. H. Hilton, Nonlinear viscoelastic bending with piezoelectric control-analytical and computational simulations, Compos. Struct. 51(2), 195 (2001). DOI: 10.1016/S0263-8223(00)00139-2.
  • B. Jiang and R. C. Batra, Effective electroelastic properties of a piezocomposite with viscoelastic and dielectric relaxing matrix, J. Intel. Mater. Syst. Struct. 12(12), 847 (2001). DOI: 10.1177/104538901400438127.
  • F. Vogel et al., Application of a viscoelastic material model in electro-mechanics, Proc. Appl. Math. Mech. 10(1), 387 (2010). DOI: 10.1002/pamm.201010186.
  • L. Azrar, A. Bakkali, and A. A. Aljinaidi, Frequency and time viscoelectroelastic effective properties modeling of heterogeneous and multi-coated piezoelectric composite materials, Compos. Struct. 113, 281 (2014). DOI: 10.1016/j.compstruct.2014.03.029.
  • A. Ask, A. Menzel, and M. Ristinmaa, Electrostriction in electro-viscoelastic polymers, Mech. Mater. 50, 9 (2012). DOI: 10.1016/j.mechmat.2012.01.009.
  • G. A. Lesieutre and U. Lee, A finite element for beams having segmented active constrained layers with frequency-dependent viscoelastics, Smart Mater. Struct. 5(5), 615 (1996). DOI: 10.1088/0964-1726/5/5/010.
  • D. J. Inman and M. J. Lam, Active constrained layer damping treatments, in: 6th International Conference on Recent Advances in Structural Dynamics, edited by N. S. Ferguson, H. F. Wolfe, and C. Mei, Vol. 1, ISVR, Southampton, UK, 1997, pp. 1–20.
  • A. Benjeddou, Advances in hybrid active-passive vibration and noise control via piezoelectric and viscoelastic constrained layer treatments, J. Vib. Control 7(4), 565 (2001). DOI: 10.1177/107754630100700406.
  • M. A. Trindade and A. Benjeddou, Hybrid active-passive damping treatments using viscoelastic and piezoelectric materials: review and assessment, J. Vib. Control 8(6), 699 (2002). DOI: 10.1177/1077546029186.
  • Y. Sogabe, K. Kishida, and K. Nakagawa, Wave propagation analysis for determining the dynamic properties of high damping alloys, Bull. Japan Soc. Mech. Eng. 25(201), 321 (1982). DOI: 10.1299/jsme1958.25.321.
  • L. E. Kinsler, Fundamentals of Acoustics (4th ed.). New York: John Wiley &Sons Inc.; 2000.
  • S. Saffar and A. Abdullah , Longitudinal wave propagation in multi cylindrical viscoelastic matching layers of airborne ultrasonic transducer: new method to consider the matching layer's diameter (frequency <100 kHz)), Ultrasonics. 53(6), 1174 (2013). DOI: 10.1016/j.ultras.2013.01.016.
  • H. S. U. Butt et al., Parametric identification for material of viscoelastic SHPB from wave propagation data incorporating geometrical effects, Int. J. Mech. Sci. 91, 46 (2015). DOI: 10.1016/j.ijmecsci.2014.06.003.
  • T. Tamaogi and Y. Sogabe, Viscoelastic properties for PMMA bar over a wide range of frequencies, in Challenges in Mechanics of Time-Dependent Materials, Conference Proceedings of the Society for Experimental Mechanics Series, edited by H. Qi (Springer, Cham, 2015) Vol. 2, pp. 95–100.
  • Q. Wang, On buckling of column structures with a pair of piezoelectric layers, Eng. Struct. 24(2), 199 (2002). DOI: 10.1016/S0141-0296(01)00088-8.
  • L. L. Ke and Y. S. Wang, Thermoelectric-mechanical vibration of piezoelectric nanobeams based on the nonlocal theory, Smart Mater. Struct. 21, 1–12 (2012). DOI: 10.1088/0964-1726/21/2/025018.
  • M. Aleyaasin and J. J. Harrigan, Wave dispersion and attenuation in viscoelastic polymeric bars: analysing the effect of lateral inertia, Int. J. Mech. Sci. 52(5), 754 (2010). DOI: 10.1016/j.ijmecsci.2010.01.007.
  • L. Wang et al., Generalization of split Hopkinson bar technique to use viscoelastic bars, Int. J. Impact Eng. 15(5), 669 (1994). DOI: 10.1016/0734-743X(94)90166-I.
  • G. D. Günalp, C. Baykara, and U. Güven, Effect of magnetic field on viscoelastic wave characteristics, Proc IMechE Part C: J. Mech. Eng. Sci. 232(19), 3482 (2018). DOI: 10.1177/0954406217737583.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.