77
Views
3
CrossRef citations to date
0
Altmetric
Articles

Fabrication of K2Nb8O21 microcrystalline with good dispersion by molten salt synthesis

, ORCID Icon, , , &
Pages 197-203 | Received 04 Aug 2018, Accepted 09 Sep 2019, Published online: 25 Feb 2020

References

  • L. Liang et al., One-dimensional ferroelectric nanostructures: synthesis, properties, and applications, Adv. Sci. 3(7), 1500358 (2016). DOI: 10.1002/advs.201500358.
  • C. Y. Xu et al., Synthesis of single-crystalline niobate nanorods via ion-exchange based on molten-salt reaction, J. Am. Chem. Soc. 129(50), 15444 (2007). DOI: 10.1021/ja077251t.
  • S. Y. Xu, and J. F. Li, Synthesis and piezoelectricity of single-crystalline (K,Na)NbO3 nanobars, J. Am. Ceram. Soc. 94(11), 3812 (2011). DOI: 10.1111/j.1551-2916.2011.04722.x.
  • S. Wongsaenmai, M. Unruan, and R. Yimnirun, Dielectric properties of (K0.5Na0.5)0.93Li0.07NbO3 ceramics under compressive stress, Ferroelectrics Lett. 40(4-6), 71 (2013). DOI: 10.1080/07315171.2007.830053.
  • F. Madaro et al., Synthesis of anisometric KNbO3 and K0.5Na0.5NbO3 single crystals by chemical conversion of non-perovskite templates, Cryst. Eng. Comm. 13(5), 1350 (2011). DOI: 10.1039/C0CE00414F.
  • C. Y. Xu et al., Electrical and microwave dielectric properties of K2Nb8O21 microwires, Ceram Inter. 35(8), 3021 (2009). DOI: 10.1016/j.ceramint.2009.04.007.
  • K. Teshima et al., Environmentally friendly growth and characterization of photocatalytic K2Nb8O21 Crystals, Jpn. J. Appl. Phys. 47(1), 629 (2008). DOI: 10.1143/JJAP.47.629.
  • H. Liu et al., New UV-A photodetector based on individual potassium niobate nanowires with high performance, Adv Opt Mater. 2(8), 771 (2014). DOI: 10.1002/adom.201400176.
  • X. Cheng et al., K2Nb8O21 nanotubes with superior electrochemical performance towards ultrastable lithium storage, J. Mater. Chem. A. 6(18), 8620 (2018). DOI: 10.1039/C8TA01411F.
  • C. Y. Xu et al., A facile molten salt route to K2Nb8O21 nanoribbons, Ceram Inter. 34(2), 435 (2008). DOI: 10.1016/j.ceramint.2006.10.007.
  • G. L. Messing et al., Templated grain growth of textured piezoelectric ceramics, Crit Rev Solid State. 29(2), 45 (2004). : DOI: 10.1080/10408430490490905.
  • L. Liu, Progress on the fabrication of lead-free textured piezoelectric ceramics: perspectives over 25 years, J. Mater. Sci: Mater. Electron. 26(7), 4425 (2015). DOI: 10.1007/s10854-015-2920-8.
  • L. Liu et al., Fabrication of KSr2Nb5O15 particles with high aspect ratio by two-step molten salt synthesis, Adv Powder Technol. 25(1), 219 (2014). DOI: 10.1016/j.apt.2013.04.002.
  • L. Li et al., Wire Structure and morphology transformation of niobium oxide and niobates by molten salt synthesis, Chem. Mater. 21(7), 1207 (2009). DOI: 10.1021/cm802776g.
  • C. M. Teng et al., Electronic diffraction and lattice imaging of K2Nb8O21, J Chinese Ceram Soc. 4, 484 (1986).
  • R. P. Sena et al., A pseudo-tetragonal tungsten bronze superstructure: a combined solution of the crystal structure of K6.4(Nb,Ta)36.3O94 with advanced transmission electron microscopy and neutron diffraction, Dalton T. 45, 973 (2016). DOI: 10.1039/C5DT03479E.
  • T. Kimura, Molten salt synthesis of ceramic powders In: Sikalidis C, eds. Advances in ceramics—synthesis and characterization, processing and specific applications Rijeka: Intech Press; 201175–100.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.