40
Views
2
CrossRef citations to date
0
Altmetric
Articles

Electrostatics liberating restrictions on ferroelectric by unification of polar discontinuity eh+ layers and criteria of intrinsicality

Pages 29-36 | Received 14 Jul 2019, Accepted 24 Dec 2019, Published online: 07 Apr 2020

References

  • V. M. Fridkin, Ferroelectric Semiconductors. New York: Prenum; 1980 (originally in 1974).
  • B. M. Vul, G. M. Guro, and I. I. Ivanchik, Field effect at the contact between a semiconductor and a c-domain ferroelectric, Soviet Phys.-Semiconduct. 4, 128 (1970).
  • (a) Y. Watanabe, Theoretical stability of the polarization in a thin semiconducting ferroelectric, Phys. Rev. B57, 789 (1998); (b) Y. Watanabe and D. Sawamura, Thermodynamic stability of the spontaneous polarization and the space charge layer in ferroelectric/semiconductor heterostructures, Jpn. J. Appl. Phys. 36, 6162 (1997); (c) Y. Watanabe and A. Masuda, Ferroelectric self-field effect: Implications for size effect and memory device, Integrated Ferroelectrics 27, 51 (1999).
  • Y. Watanabe et al., Surface conduction on insulating BaTiO3 crystal suggesting an intrinsic surface electron layer. Phys. Rev. Lett. 86 (2), 332 (2001). DOI: 10.1103/PhysRevLett.86.332.
  • R. E. Cohen, Surface effects in ferroelectrics: Periodic slab computations for BaTiO3, Ferroelectrics 194 (1), 323 (1997). DOI: 10.1080/00150199708016102.
  • M. Krǒmar and C. L. Fu, Structural and electronic properties of BaTiO3 slabs: Mechanism for surface conduction, Phys. Rev. B20, 115404 (2003).
  • J. Seidel et al., Conduction at domain walls in oxide multiferroics, Nat. Mater. 8 (3), 229 (2009). DOI: 10.1038/nmat2373.
  • T. Sluka et al., Free-electron gas at charged domain walls in insulating BaTiO3, Nat. Commun. 1808 (2013).
  • A. Ohtomo and H. Y. Hwang, A high-mobility electron gas at the LaAlO3/SrTiO3 heterointerface. Nature. 427 (6973), 423 (2004). DOI: 10.1038/nature02308.
  • I. P. Batra, P. Wurfel, and B. D. Silverman, New type of first-order phase transition in ferroelectric thin films. Phys. Rev. Lett. 30 (9), 384 (1973). DOI: 10.1103/PhysRevLett.30.384.
  • Y. Watanabe, Apparent closure domain by standard 180° domain theory and necessity of fundamental screening in the theory, Ferroelectrics 401 (1), 61 (2010). DOI: 10.1080/00150191003670432.
  • (a) Y. Watanabe, Proper permittivity for depolarization field in perfectly insulating ferroelectric and examination of background permittivity. Ferroelectrics 461, 38 (2014); (b) Y. Watanabe, Proper permittivity for depolarization field and its implication to universal instability of insulating ferroelectric: A note, J. Phys. Soc. Jpn. 79, 034713 (2010).
  • Y. Watanabe, Theoretical stability of the polarization in insulating ferroelectric/semiconductor structures. J. Appl. Phys. 83 (4), 2179 (1998). Erratum: ibid. 84, 3428 (1998). DOI: 10.1063/1.368506.
  • Y. Watanabe and A. Masuda, Theoretical stability of polarization in metal/ferroelectric insulator/semiconductor and related structure, Jpn. J. Appl. Phys. 40, 5610 (2001).
  • M. Y. Gureev, A. K. Tagantsev, and N. Setter, Head-to-head and tail-to-tail 180° domain walls in an isolated ferroelectric. Phys. Rev. B. 83 (18), 184104 (2011). DOI: 10.1103/PhysRevB.83.184104.
  • K. F. Garrity, K. M. Rabe, and D. Vanderbilt, Hyperferroelectrics: Proper ferroelectrics with persistent polarization. Phys. Rev. Lett. 112 (12), 127601 (2014). DOI: 10.1103/PhysRevLett.112.127601.
  • S. Liu and R. E. Cohen, Stable charged antiparallel domain walls in hyperferroelectrics, J. Phys.: Condens. Matter. 29, 244003 (2017). DOI: 10.1088/1361-648X/aa6f95.
  • Y. Watanabe, Microscopic derivation of free energy under electric field in ferroelectric and ferroelectric heterostructures containing free carriers, Ferroelectrics 333 (1), 57 (2006).
  • Y. Watanabe, Calculation of strained BaTiO3 with different exchange correlation functionals examined with criterion by Ginzburg-Landau theory, uncovering expressions by crystallographic parameters. J. Chem. Phys. 148 (19), 194702 (2018). DOI: 10.1063/1.5022319.
  • H. Uwe, and T. Sakudo, Stress-induced ferroelectricity and soft phonon modes in SrTi O3. Phys. Rev. B. 13 (1), 271 (1976). DOI: 10.1103/PhysRevB.13.271.
  • Y. Watanabe, Ferroelectricity of stress-free and strained pure SrTiO3 revealed by ab initio calculations with hybrid and density functionals. Phys. Rev. B. 99 (6), 064107 (2019). DOI: 10.1103/PhysRevB.99.035108.
  • T. Günter et al., Spatial inhomogeneities at the LaAlO3/SrTiO3 interface: Evidence from second harmonic generation. Phys. Rev. B. 86 (23), 235418 (2012).
  • P. W. Lee et al., Hidden lattice instabilities as origin of the conductive interface between insulating LaAlO3 and SrTiO3. Nat. Commun. 7, 12773 (2016). DOI: 10.1038/ncomms12773.
  • R. P. Feynman et al., The Feynman Lectures on Physics II-11-11. Reading, MA: Addison-Wesley; 1971.
  • Y. Watanabe, Solid State Phenomena Trans Tech Publications, Kreuzstr. 10, 8635 Zurich-Durnten, Switzerland. http://www.ttp.net
  • Y. Watanabe (unpublished).
  • M. Cardona, Optical properties and band structure of SrTiO3 and BaTiO3. Phys. Rev. 140 (2A), A651 (1965). DOI: 10.1103/PhysRev.140.A651.
  • M. Wöhlecke, V. Marrello, and A. Onton, Refractive index of BaTiO3 and SrTiO3 films. J. Appl. Phys. 48 (4), 1748 (1977). DOI: 10.1063/1.323822.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.