55
Views
2
CrossRef citations to date
0
Altmetric
Articles

Modeling of hybrid relaxor-ferroelectric Ba(Zr0.2Ti0.8)O3 ceramics

, , &
Pages 8-15 | Received 14 Jul 2019, Accepted 24 Dec 2019, Published online: 07 Apr 2020

References

  • M. E. Lines and A. M. Glass. Principles and Applications of Ferroelectrics and Related Materials (Oxford University Press, Oxford, 2001).
  • G. Suchaneck, O. Pakhomov, and G. Gerlach, Electrocaloric cooling In: Refrigeration, edited by O. Ekren, London: InTechOpen; 2017), pp. 19–43.
  • P. D. Thacher, Electrocaloric effects in some ferroelectric and antiferroelectric Pb(Zr,Ti)O3 compounds, J. Appl. Phys. 39(4), 1996 (1968). DOI: 10.1063/1.1656478.
  • A. Kitanovski et al., Present and future caloric refrigeration and heat-pump technologies, Int. J. Refrig. 57, 288 (2015). DOI: 10.1016/j.ijrefrig.2015.06.008.
  • G. Suchaneck and G. Gerlach, The impact of the P–E hysteresis on the performance of electrocaloric cooling, Ferroelectrics. 516(1), 1 (2017). DOI: 10.1080/00150193.2017.1362231.
  • A. E. Glazounov, A. J. Bell, and A. K. Tagantsev, Relaxors as superparaelectrics with distributions of the local transition temperature, J. Phys: Condens. Matter. 7, 4145 (1995). DOI: 10.1088/0953-8984/7/21/013.
  • G. G. Wiseman and J. K. Kuebler, Electrocaloric effect in ferroelectric Rochelle salt, Phys. Rev. 131(5), 2023 (1963). DOI: 10.1103/PhysRev.131.2023.
  • V. Basso, J.-F. Gerard, and S. Pruvost, Doubling the electrocaloric cooling of poled ferroelectric materials by bipolar cycling, Appl. Phys. Lett. 105(5), 052907 (2014). DOI: 10.1063/1.4892358.
  • Y.-B. Ma et al., Determination of Optimal Reversed Field with Maximal Electrocaloric Cooling by a Direct Entropy Analysis. arXiv. (2016). 1608.03401.
  • X. Qian et al., Anomalous negative electrocaloric effect in a relaxor/normal ferroelectric polymer blend with controlled nano-and meso-dipolar couplings, Appl. Phys. Lett. 108(14), 142902 (2016). DOI: 10.1063/1.4944776.
  • A. Smolensky, Physical phenomena in ferroelectric with diffused-type materials, J. Phys. Soc. Jpn. 28(Suppl), 26 (1970).
  • L. E. Cross, Relaxor ferroelectrics, Ferroelectrics. 76(1), 241 (1987). DOI: 10.1080/00150198708016945.
  • A. S. Starkov et al., Hysteresis phenomena in relaxor ferroelectrics: consideration of polar nanoregions, Phys. Status Solidi B. 255(2), 1700245 (2018). DOI: 10.1002/pssb.201700245.
  • A. Starkov and I. Starkov, Asymptotic description of the time and temperature hysteresis in the framework of Landau-Khalatnikov equation, Ferroelectrics. 461(1), 50 (2014). DOI: 10.1080/00150193.2014.889544.
  • V. V. Shvartsman and A. L. Kholkin, Domain structure of 0.8Pb(Mg1/3Nb2/3)O3-0.2PbTiO3 studied by piezoresponse force microscopy, Phys. Rev. B. 69, 014102 (2004).
  • X.-S. Qian et al., Giant electrocaloric response over a broad temperature range in modified BaTiO3 ceramics, Adv. Funct. Mater. 24(9), 1300 (2014). DOI: 10.1002/adfm.201302386.
  • H.-J. Ye et al., Giant electrocaloric effect in BaZr0.2Ti0.8O3 thick film, Appl. Phys. Lett. . 105(15), 152908 (2014). DOI: 10.1063/1.4898599.
  • W. Kleemann et al., Crossover from ferroelectric to relaxor and cluster glass in BaTi1-xZrxO3 (x = 0.25–0.35) studied by non-linear permittivity, Appl. Phys. Lett. . 102(23), 232907 (2013). DOI: 10.1063/1.4811089.
  • X. G. Tang, K.-H. Chew, and H. L. W. Chan, Diffuse phase transition and dielectric tunability of Ba(ZryTi1-y)O3 relaxor ferroelectric ceramics, Acta Mater. 52(17), 5177 (2004). DOI: 10.1016/j.actamat.2004.07.028.
  • G. Suchaneck and G. Gerlach, Adapting BaTiO3-based relaxor ferroelectrics for electrocaloric application, Ferroelectrics. 515(1), 1 (2017). DOI: 10.1080/00150193.2017.1360094.
  • L. D. Landau and L. M. Lifshitz, Electrodynamics of Continuous Media, Volume 8, Course of Theoretical Physics (Pergamon Press, Oxford, 1960), pp. 42–44.
  • O. G. Vendik, N. Y. Medvedeva, and S. B. Zubko, Effective permittivity of a nanostructured film consisting of elliptic ferroelectric grains, Tech. Phys. Lett. . 34(4), 323 (2008). DOI: 10.1134/S1063785008040160.
  • A. S. Starkov, O. V. Pakhomov, and I. A. Starkov, Theoretical model for thin ferroelectric films and the multilayer structures based on them, J. Exp. Theoret. Phys. 116(6), 987 (2013). DOI: 10.1134/S1063776113060149.
  • Md. S. Islam et al., Role of dynamic polar nanoregions in heterovalent perovskite relaxor: Inelastic light scattering study of ferroelectric Ti rich Pb(Zn1/3Nb2/3)O3-PbTiO3, J Appl Phys. 112, 114106 (2012). DOI: 10.1063/1.4768278.
  • U. Nowak, J. Esser, and K.-D. Usadel, Dynamics of domains in diluted antiferromagnets, Physica A. 232(1/2), 40 (1996). DOI: 10.1016/0378-4371(96)00133-1.
  • T. Yang, X. Ke, and Y. Wang, Mechanisms responsible for the large piezoelectricity at the tetragonal-orthorhombic phase boundary of (1-x)BaZr0.2Ti0.8O3-xBa0.7Ca0.3TiO3 system, Sci. Rep. 6(1), 33392 (2016). DOI: 10.1038/srep33392.
  • X. G. Tang et al., Effects of grain size on the dielectric properties and tunabilities of sol-gel derived Ba (Zr0.2Ti0.8)O3 ceramics, Solid State Commun. 131(3/4), 163 (2004). DOI: 10.1016/j.ssc.2004.05.016.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.