108
Views
1
CrossRef citations to date
0
Altmetric
Articles

Structural and electrical properties of dipole-like substituted barium titanate

, &
Pages 1-11 | Received 01 May 2019, Accepted 05 Sep 2019, Published online: 04 May 2020

References

  • C. Buttay et al., State of the art of high temperature power electronics, Mater. Sci. Eng.: B. 176 (4), 283. (2011). DOI: 10.1016/j.mseb.2010.10.003.
  • P. Hagler, P. Henson, and R. W. Johnson, Packaging technology for electronic applications in harsh high-temperature environments, IEEE Trans. Ind. Electron. 58 (7), 2673 (2011). DOI: 10.1109/TIE.2010.2047832.
  • H. Du et al., High Tm lead-free relaxor ferroelectrics with broad temperature usage range: 0.04 BiScO3-0.96 (K0.5Na0.5) NbO3, .J Appl. Phys. 104, 4104 (2008).
  • R. W. Johnson et al., The changing automotive environment: high-temperature electronics, IEEE Trans. Electron. Packag. Manufact. 27 (3), 164 (2004). DOI: 10.1109/TEPM.2004.843109.
  • S. A. Wolf, and D. Treger, Frequency agile materials for electronics (fame)-progress in the darpa program, Integr. Ferroelectr. 42 (1), 39 (2002). DOI: 10.1080/713718142.
  • S. Lokare, Structural and electrical properties of BaTiO3 prepared by solid state route, Inter J Chem. Phys. Sci. 4, 154 (2015).
  • A. Zeb, and S. J. Milne, Stability of high‐temperature dielectric properties for (1− x) Ba0.8Ca0. 2TiO3–XBi (Mg0.5Ti0.5)O3 ceramics, J. Am. Ceram. Soc. 96 (9), 2887 (2013). DOI: 10.1111/jace.12412.
  • S. U. Jan, A. Zeb, and S. J. Milne, Dielectric ceramic with stable relative permittivity and low loss from −60 to 300 °C: a potential high temperature capacitor material, J. Eur. Ceram. Soc. 36 (11), 2713 (2016). DOI: 10.1016/j.jeurceramsoc.2016.03.018.
  • H. Ogihara et al., High‐energy density capacitors utilizing 0.7 BaTiO3–0.3 BiScO3 ceramics, J. Amer. Ceram. Soc. 92 (8), 1719 (2009). DOI: 10.1111/j.1551-2916.2009.03104.x.
  • X. Tang, K.-H. Chew, and H. Chan, Diffuse phase transition and dielectric tunability of Ba(ZrYTi1− Y)O3 relaxor ferroelectric ceramics, Acta. Mater. 52 (17), 5177 (2004). DOI: 10.1016/j.actamat.2004.07.028.
  • X. Chou et al., Dielectric properties and relaxor behavior of rare-earth (La, Sm, Eu, Dy, Y) substituted barium zirconium titanate ceramics, J. App. Phys. 102 (8), 084106 (2007). DOI: 10.1063/1.2799081.
  • L. E. Cross, Relaxor ferroelectrics, Ferroelectr., 76, 241–267 (1987). DOI: 10.1080/00150198708016945.
  • C. Kruea-In et al., Relaxor behaviour of K0.5Bi0.5TiO3-BiScO3 ceramics, Appl. Phys. Lett. 100 (20), 202904 (2012). DOI: 10.1063/1.4718422.
  • B. Xiong et al., Structure, dielectric properties and temperature stability of BaTiO3–Bi(Mg1/2Ti1/2)O3 perovskite solid solutions, J. Am. Ceram. Soc. 94 (10), 3412 (2011). DOI: 10.1111/j.1551-2916.2011.04519.x.
  • A. Bokov, and Z. G. Ye, Recent progress in relaxor ferroelectrics with perovskite structure, J. Mat. Sci., 41 (1), 31–52 (2006). DOI: 10.1007/s10853-005-5915-7.
  • D. Viehland et al., Deviation from curie-weiss behavior in relaxor ferroelectrics, Phys. Rev. B. 46 (13), 8003 (1992). DOI: 10.1103/PhysRevB.46.8003.
  • T. A. Skidmore, T. P. Comyn, and S. J. Milne, and Piezoelectric properties in the system:(1− x)[(Na0.5K0.5NbO3) 0.93-(LiTaO3)0.07]- x [BiScO3, J. Amer. Ceram. Soc. 93 (3), 624 (2010). ],” DOI: 10.1111/j.1551-2916.2009.03470.x.
  • R. Dittmer et al., High‐temperature‐capacitor dielectric based on K0.5Na0.5NbO3‐modified Bi1/2Na1/2TiO3–Bi1/2K1/, J. Am. Ceram. Soc. 95 (11), 3519 (2012). DOI: 10.1111/j.1551-2916.2012.05321.x.
  • T. R. Mion et al., Structural properties of Ba (Y3+, Sb5+)0.05 Ti0, Integr. Ferroelectr. 148 (1), 17 (2013). and DOI: 10.1080/10584587.2013.851584.
  • V. Miller, and S. Tidrow, Perovskites: effective temperature and coordination dependence of 38 ionic radii, Integr. Ferroelectr. 166 (1), 30 (2015). DOI: 10.1080/10584587.2015.1092196.
  • T. Mion et al., Ray diffraction analysis of Ba(Ga, Ta)0.05Ti0, Ferroelectr. 473 (1), 13 (2014). DOI: 10.1080/00150193.2014.974431.
  • V. K. Veerapandiyan, Inducing Diffuse Phase Transitions in Barium Titanate Using Ga3+-Ta5+ Dipole Pair Substituents; Master of Science Thesis; Alfred University; Alfred, NY; 2017.
  • Hippel, A. V. Ferroelectricity, Domain structure, and phase transitions of barium titanate, Rev. Mod. Phys. 22, 221 (1950).
  • Y. Liao, Electrical properties of Ba[(M0.05Ta0.05)Ti0.9]O3 with M = Sc, Cr, Mn, or Fe and Ba[(M0.0333Ta0.0666)Ti0.9]O3 with M = Mn, Ni, or Cu Bachelor of Science Thesis; Alfred University; Alfred, NY; 2017.
  • Y. He, Heat capacity, thermal conductivity, and thermal expansion of barium titanate-based ceramics, Thermochim. Acta. 419 (1-2), 135 (2004). DOI: 10.1016/j.tca.2004.02.008.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.