106
Views
1
CrossRef citations to date
0
Altmetric
Articles

Microstructure-based constitutive model for static mechanical behavior of Si-Mn TRIP steels

&
Pages 42-53 | Received 17 Oct 2019, Accepted 30 Jan 2020, Published online: 28 Sep 2020

References

  • O. Matsumura, Y. Sakuma, and H. Takechi, Enhancement of elongation by retained austenite in intercritical annealed 0.4C-1.5Si-0.8Mn steel, ISIJ Int. 27 (7), 570 (1987). DOI: 10.2355/isijinternational1966.27.570.
  • N. V. Apostolos et al., Low-alloy TRIP steels: a correlation between mechanical properties and the retained austenite stability, Steel Res. Int. 73 (6–7), 249 (2002). DOI: 10.1002/srin.200200204.
  • P. J. Jacques et al., On measurement of retained austenite in multiphase TRIP steels-results of blind round robin test involving six different techniques, Metal Sci. J. 25 (5), 567 (2009). DOI: 10.1179/174328408X353723.
  • S. V. D. Zwaag et al., Thermal and mechanical stability of retained austenite in aluminum-containing multiphase TRIP steels, ISIJ Int. 42 (12), 1565 (2002). DOI: 10.2355/isijinternational.42.1565.
  • J. Zrník et al., In situ neutron diffraction analysis of phase transformation kinetics in TRIP steel, MSF 502, 339 (2005). DOI: 10.4028/www.scientific.net/MSF.502.339.
  • K. I. Sugimoto et al., Retained austenite characteristics and tensile properties in a TRIP type bainitic sheet steel, ISIJ Int. 40 (9), 902 (2000). DOI: 10.2355/isijinternational.40.902.
  • X. Wei, R. Fu, and L. Lin, Tensile deformation behavior of cold-rolled TRIP-aided steels over large range of strain rates, Mater. Sci. Eng. A 465 (1-2), 260 (2007). DOI: 10.1016/j.msea.2007.02.126.
  • S. Cheng et al., Probing the characteristic deformation behaviors of transformation-induced plasticity steels, Metall. Mater. Trans. A 39 (13), 3105 (2008). DOI: 10.1007/s11661-008-9604-4.
  • E. Jimenez-Melero et al., Martensitic transformation of individual grains in low-alloyed TRIP steels, Scr. Mater. 56 (5), 421 (2007). DOI: 10.1016/j.scriptamat.2006.10.041.
  • E. Jimenez-Melero et al., Characterization of individual retained austenite grains and their stability in low-alloyed TRIP steels, Acta Mater. 55 (20), 6713 (2007). DOI: 10.1016/j.actamat.2007.08.040.
  • F. Lani et al., Multiscale mechanics of TRIP-assisted multiphase steels: II. Micromechanical modelling, Acta Mater. 55 (11), 3695 (2007). DOI: 10.1016/j.actamat.2007.02.015.
  • H. Yu, Y. Gao, and D. Meng, Transformation behavior of retained austenite under different deformation modes for low alloyed TRIP-assisted steels, Mater. Sci. Eng. A 441 (1-2), 331 (2006). DOI: 10.1016/j.msea.2006.08.061.
  • C. P. Scott and J. Drillet, A study of the carbon distribution in retained austenite, Scr. Mater. 56 (6), 489 (2007). DOI: 10.1016/j.scriptamat.2006.11.033.
  • S. Chatterjee and H. K. D. H. Bhadeshia, Transformation induced plasticity assisted steels: stress or strain affected martensitic transformation, Metal Sci. J. 23 (9), 1101 (2007). DOI: 10.1179/174328407X226536.
  • B. X. Huang, X. D. Wang, and Y. H. Rong, A method of discrimination between stress-assisted and strain-induced martensitic transformation using atomic force microscopy, Scr. Mater. 57 (6), 501 (2007). DOI: 10.1016/j.scriptamat.2007.05.029.
  • U. Reisgen et al., Numerical and experimental investigation of tensile behavior of laser beam welded TRIP700 steel, ISIJ Int. 51 (3), 429 (2011). DOI: 10.2355/isijinternational.51.429.
  • T. Gnaupel-Herold and A. Creuziger, Diffraction study of the retained austenite content in TRIP steels, Mater. Sci. Eng. A 528 (10-11), 3594 (2011). DOI: 10.1016/j.msea.2011.01.030.
  • J. Chiang et al., Effect of microstructure on retained austenite stability and work hardening of TRIP steels, Mater. Sci. Eng. A 528 (13-14), 4516 (2011). DOI: 10.1016/j.msea.2011.02.032.
  • E. V. Pereloma et al., Three-dimensional atom probe analysis of solute distribution in thermomechanically processed TRIP steels, Acta Mater. 55 (8), 2587 (2007). DOI: 10.1016/j.actamat.2006.12.001.
  • X. D. Wang et al., Microstructures and stability of retained austenite in TRIP steels, Mater. Sci. Eng. A 438-440, 300 (2006). DOI: 10.1016/j.msea.2006.02.149.
  • G. Ghosh and G. B. Olson, Precipitation of paraequilibrium cementite: experiments, and thermodynamic and kinetic modeling, Acta Mater. 50 (8), 2099 (2002). DOI: 10.1016/S1359-6454(02)00054-X.
  • J. B. Leblond, Mathematical modeling of transformation plasticity in steels (Report2, coupling with strain hardening phenomena), Int. J. Plast. 5 (6), 573 (1989). DOI: 10.1016/0749-6419(89)90002-8.
  • L. Taleb and F. Sidoroff, A micromechanical modeling of the Greenwood–Johnson mechanism in transformation induced plasticity, Int. J. Plast. 19 (10), 1821 (2003). DOI: 10.1016/S0749-6419(03)00020-2.
  • L. Taleb and S. Petit, New investigations on transformation induced plasticity and its interaction with classical plasticity, Int. J. Plast. 22 (1), 110 (2006). DOI: 10.1016/j.ijplas.2005.03.012.
  • G. B. Olson and M. Cohen, Kinetics of strain-induced martensitic nucleation, MTA 6 (4), 791 (1975). DOI: 10.1007/BF02672301.
  • R. G. Stringfellow, D. M. Parks, and G. B. Olson, A constitutive model for transformation plasticity accompanying strain-induced martensitic transformations in metastable austenitic steels, Acta Metall. Mater. 40 (7), 1703 (1992). DOI: 10.1016/0956-7151(92)90114-T.
  • T. Iwamoto and T. Tsuta, Computational simulation of the dependence of the austenitic grain size on the deformation behavior of TRIP steels, Int. J. Plast. 16 (7-8), 791 (2000). DOI: 10.1016/S0749-6419(99)00079-0.
  • A. Perlade, O. Bouaziz, and Q. Furnémont, A physically based model for TRIP-aided carbon steels behaviour, Mater. Sci. Eng.: A 356 (1-2), 145 (2003). DOI: 10.1016/S0921-5093(03)00121-7.
  • J. Bouquerel, K. Verbeken, and B. Decooman, Microstructure-based model for the static mechanical behaviour of multiphase steels, Acta Mater. 54 (6), 1443 (2006). DOI: 10.1016/j.actamat.2005.10.059.
  • C. Kim, Modeling tensile deformation of dual-phase steel, MTA 19 (5), 1263 (1988). DOI: 10.1007/BF02662587.
  • T. Iwamoto, T. Tsuta, and Y. Tomita, Investigation on deformation mode dependence of strain-induced martensitic transformation in trip steels and modelling of transformation kinetics, Adv. Eng. Plast. Appl. 40, 173 (1998).
  • I. Papatriantafillou et al., Constitutive modeling and finite element methods for TRIP steels, Comput. Methods Appl. Mech. Eng. 195 (37-40), 5094 (2006). DOI: 10.1016/j.cma.2005.09.026.
  • P. J. Jacques et al., Multiscale mechanics of TRIP-assisted multiphase steels: I. Characterization and mechanical testing, Acta Mater. 55 (11), 3681 (2007). DOI: 10.1016/j.actamat.2007.02.029.
  • S. Sun et al., Research on constitutive model of TRIP600 based on rheological theory, JME 52 (10), 75 (2016). DOI: 10.3901/JME.2016.10.075.
  • G. N. Haidemenopoulos, N. Aravas, and I. Bellas, Kinetics of strain-induced transformation of dispersed austenite in low-alloy TRIP steels, Mater. Sci. Eng.: A 615, 416 (2014). DOI: 10.1016/j.msea.2014.07.099.
  • K. Araki, Y. Takada, and K. Nakaoka, Work hardening of continuously annealed dual phase steels, ISIJ Int. 17 (12), 710 (1977). DOI: 10.2355/isijinternational1966.17.710.
  • Y. Tomota et al., On the average internal stresses in each constituent phase in plastically deformed two-ductile-phase alloys, Mater. Sci. Eng. 46 (1), 69 (1980). DOI: 10.1016/0025-5416(80)90191-3.
  • M. T. Ma, Physical and Mechanical Metallurgy of Dual-Phase Steel (Metallurgical Industry Press, Beijing, 2009).
  • M. I. Latypov et al., Micromechanical finite element analysis of strain partitioning in multiphase medium manganese TWIP + TRIP steel, Acta Mater. 108, 219 (2016). DOI: 10.1016/j.actamat.2016.02.001.
  • H. Kim et al., Experiment and modeling to investigate the effect of stress state, strain and temperature on martensitic phase transformation in TRIP-assisted steel, Acta Mater. 97, 435 (2015). DOI: 10.1016/j.actamat.2015.06.023.
  • K. S. Choi et al., Microstructure-based constitutive modeling of TRIP steel: prediction of ductility and failure modes under different loading conditions, Acta Mater. 57 (8), 2592 (2009). DOI: 10.1016/j.actamat.2009.02.020.
  • S. Kang et al., Prediction of tensile properties of intercritically annealed Al-containing 0.19C–4.5Mn (wt%) TRIP steels, Mater. Des. 97, 138 (2016). DOI: 10.1016/j.matdes.2016.02.058.
  • S. Zhang and K. O. Findley, Quantitative assessment of the effects of microstructure on the stability of retained austenite in TRIP steels, Acta Mater. 61 (6), 1895 (2013). DOI: 10.1016/j.actamat.2012.12.010.
  • G. E. Dieter, Mechanical Metallurgy, 2nd ed. (New York, 1976). 329. https://www.researchgate.net/publication/273454147_Mechanical_Metallurgy
  • R. G. Davies, Influence of martensite composition and content on the properties of dual phase steels, MTA 9 (5), 671 (1978). DOI: 10.1007/BF02659924.
  • H. Y. Yu, Investigation on transformation-induced plasticity behavior in complex strain state for TRIP steels and its application to autobody panels, Ph.D. Dissertation, Shanghai Jiao Tong University, 2005.
  • I. Gutiérrez and M. A. Altuna, Work-hardening of ferrite and microstructure-based modelling of its mechanical behaviour under tension, Acta Mater. 56 (17), 4682 (2008). DOI: 10.1016/j.actamat.2008.05.023.
  • Y. I. Son et al., Ultrafine grained ferrite–martensite dual phase steels fabricated via equal channel angular pressing: microstructure and tensile properties, Acta Mater. 53 (11), 3125 (2005). DOI: 10.1016/j.actamat.2005.02.015.
  • T. Hüper et al., Effect of volume fraction of constituent phases on the stress-strain relationship of dual phase steels, ISIJ Int. 39 (3), 288 (1999). DOI: 10.2355/isijinternational.39.288.
  • J. David and D. Rafael, Characteristics of coatings in the vacuum, Acta Microsc. 28 (1), 48 (2019).
  • P. Jacques et al., On the role of martensitic transformation on damage and cracking resistance in TRIP-assisted multiphase steels, Acta Mater. 49 (1), 139 (2001). DOI: 10.1016/S1359-6454(00)00215-9.
  • M. Zhang et al., Continuous cooling transformation diagrams and properties of micro-alloyed TRIP steels, Mater. Sci. Eng.: A 438-440, 296 (2006). DOI: 10.1016/j.msea.2006.01.128.
  • Z. He et al., Effect of strain rate on deformation behavior of TRIP steels, J. Mater. Process. Technol. 212 (10), 2141 (2012). DOI: 10.1016/j.jmatprotec.2012.05.020.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.