213
Views
3
CrossRef citations to date
0
Altmetric
Articles

DFT investigations on photoelectric properties of graphene modified by metal atoms

, , , &
Pages 143-154 | Received 20 Nov 2019, Accepted 31 Mar 2020, Published online: 03 Nov 2020

Reference

  • H. W. Kroto et al. , C60: Buckminsterfullerene, Nature 318 (6042), 162 (1985). DOI: 10.1038/318162a0.
  • S. Iijima , Helical microtubules of graphitic carbon, Nature 354 (6348), 56 (1991). DOI: 10.1038/354056a0.
  • K. S. Novoselov et al. , Electric field effect in atomically thin carbon films, Science 306 (5696), 666 (2004). [Database] DOI: 10.1126/science.1102896.
  • A. C. Neto et al. , The electronic properties of graphene, Rev. Mod. Phys. 81 (1), 109 (2009). DOI: 10.1103/RevModPhys.81.109.
  • Y. Zhao et al. , Highly compression-tolerant supercapacitor based on polypyrrole-mediated graphene foam electrodes, Adv. Mater. Weinheim. 25 (4), 591 (2013). DOI: 10.1002/adma.201203578.
  • T. Y. Kim et al. , Activated graphene-based carbons as supercapacitor electrodes with macro- and mesopores, ACS Nano. 7 (8), 6899 (2013). DOI: 10.1021/nn402077v.
  • D. Wei et al. , Graphene nanoarchitecture in batteries, Nanoscale 6 (16), 9536 (2014). DOI: 10.1039/c4nr02089h.
  • C. Liu et al. , Graphene-based supercapacitor with an ultrahigh energy density, Nano Lett. 10 (12), 4863 (2010)., and DOI: 10.1021/nl102661q.
  • M. J. Deka , U. Baruah , and D. Chowdhury , Insight into electrical conductivity of graphene and functionalized graphene: role of lateral dimension of graphene sheet, Mater. Chem. Phys. 163 , 236 (2015). DOI: 10.1016/j.matchemphys.2015.07.036.
  • E. V. Castro et al. , Biased bilayer graphene: semiconductor with a gap tunable by the electric field effect, Phys. Rev. Lett. 99 (21), 216802 (2007). DOI: 10.1103/PhysRevLett.99.216802.
  • T. Schiros et al. , Atomistic interrogation of B–N Co-dopant structures and their electronic effects in graphene, ACS. Nano 10 (7), 6574 (2016). DOI: 10.1021/acsnano.6b01318.
  • Z. Ao et al. , Enhancement of the stability of fluorine atoms on defective graphene and at graphene/fluorographene interface, ACS Appl. Mater. Interfaces 7 (35), 19659 (2015). DOI: 10.1021/acsami.5b04319.
  • J. R. F. Lima , Engineering the electronic structure of graphene superlattices via Fermi velocity modulation, Eur. Phys. J. B 90 , 5 (2017).
  • D. Zhan et al. , Engineering the electronic structure of graphene, Adv. Mater. Weinheim. 24 (30), 4055 (2012). DOI: 10.1002/adma.201200011.
  • B. Guo et al. , Graphene doping: a review, Insciences J. 1 , 80 (2011). DOI: 10.5640/insc.010280.
  • N. A. Kumar , and J. B. Baek , Doped graphene supercapacitors, Nanotechnology 26 (49), 492001 (2015). DOI: 10.1088/0957-4484/26/49/492001.
  • P. Avouris , Graphene: electronic and photonic properties and devices, Nano Lett. 10 (11), 4285 (2010). DOI: 10.1021/nl102824h.
  • J. Qi et al. , Controlled ambipolar tuning and electronic superlattice fabrication of graphene via optical gating, Adv. Mater. Weinheim. 26 (22), 3735 (2014). DOI: 10.1002/adma.201400062.
  • D. Zhao et al. , Enhanced gas-sensing performance of graphene by doping transition metal atoms: A first-principles study, Phys. Lett. A 382 (40), 2965 (2018). DOI: 10.1016/j.physleta.2018.06.046.
  • Y. Mao , G. M. Stocks , and J. Zhong , First-principles study of the doping effects in bilayer graphene, New J. Phys. 12 (3), 033046 (2010). DOI: 10.1088/1367-2630/12/3/033046.
  • X. Zhou et al. , DFT study on the electronic structure and optical properties of N, Al, and N-Al doped graphene, Appl. Surf. Sci. 459 , 354 (2018). DOI: 10.1016/j.apsusc.2018.08.015.
  • Z. Fan et al. , First-principles investigation of adsorption of Ag on defected and Ce-doped graphene, Mater 12 (4), 649 (2019). DOI: 10.3390/ma12040649.
  • H. Chen et al. , Enhanced photocatalytic performance of ZnO monolayer for water splitting via biaxial strain and external electric field, Appl. Surf. Sci. 481 , 1064 (2019). DOI: 10.1016/j.apsusc.2019.03.105.
  • M. C. Payne et al. , Iterative minimization techniques for ab initio total-energy calculations: molecular dynamics and conjugate gradients, Rev. Mod. Phys. 64 (4), 1045 (1992). DOI: 10.1103/RevModPhys.64.1045.
  • X. S. Dai et al. , Structure, electronic and optical properties of Al, Si, P doped penta-graphene: a first-principles study, Phys. B 574 , 411660 (2019). DOI: 10.1016/j.physb.2019.411660.
  • J. P. Perdew , K. Burke , and M. Ernzerhof , Generalized gradient approximation made simple, Phys. Rev. Lett. 77 (18), 3865 (1996). DOI: 10.1103/PhysRevLett.77.3865.
  • X. P. Chen et al. , First-principles study of the effect of functional groups on polyaniline backbone, Sci. Rep. 5 , 16907 (2015). DOI: 10.1038/srep16907.
  • X. P. Chen et al. , Functionalization-induced changes in the structural and physical properties of amorphous polyaniline: a first-principles and molecular dynamics study, Sci. Rep. 6 , 20621 (2016). DOI: 10.1038/srep20621.
  • Y. H. Dai , Convergence properties of the BFGS algoritm, SIAM J. Optim. 13 (3), 693 (2002). DOI: 10.1137/S1052623401383455.
  • X. S. Dai , T. Shen , and H. C. Liu , DFT study on electronic and optical properties of graphene modified by phosphorus, Mater. Res. Express. 6 , 8 (2019).
  • Y. Sakai , S. Saito , and M. L. Cohen , First-principles study on graphene/hexagonal boron nitride heterostructures, J. Phys. Soc. Jpn. 84 (12), 121002 (2015). DOI: 10.7566/JPSJ.84.121002.
  • W. Zhang et al. , Hydrogen adatom interaction on graphene: a first principles study, Carbon 131 , 137 (2018). DOI: 10.1016/j.carbon.2018.01.096.
  • M. Farjam , and H. Rafii-Tabar , Phys. Rev. B. 80 , 167401 (2009).
  • D. S. L. Abergel , P. Pietiläinen , and T. Chakraborty , Electronic compressibility of graphene: The case of vanishing electron correlations and the role of chirality, Phys. Rev. B 80 , 1956 (2009).
  • Y. Dedkov , and E. Voloshina , Graphene growth and properties on metal substrates, J. Phys. Condens. Matter. 27 (30), 303002 (2015). DOI: 10.1088/0953-8984/27/30/303002.
  • Y. Park et al. , First-principles studies of the electronic and dielectric properties of Si/SiO2/HfO2 interfaces, Jpn. J. Appl. Phys. 52 (4R), 041803 (2013). DOI: 10.7567/JJAP.52.041803.
  • P. S. Miedema , H. Ikeno , and F. D. De Groot , First principles multiplet calculations of the calcium L 2, 3 x-ray absorption spectra of CaO and CaF 2, J. Phys. Condens. Matter 23 (14), 145501 (2011). DOI: 10.1088/0953-8984/23/14/145501.
  • S. Behzad , First principles study of electronic properties, interband transitions and electron energy loss of ?-graphyne, Eur. Phys. J. B. 5 , 112 (2016).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.