292
Views
4
CrossRef citations to date
0
Altmetric
Articles

Dependence of metal gate work function variation for various ferroelectric thickness on electrical parameters in NC-FinFET

, &
Pages 67-76 | Received 05 Aug 2019, Accepted 11 May 2020, Published online: 11 Jan 2021

References

  • J. Rabaey, Low Power Design Essentials. New York: Springer, 2009
  • B. Ahlgren, M. Hidell, and E. C. Ngai, Internet of things for smart cities: interoperability and open data. IEEE Internet Comput. 20 (6), 52 (2016). DOI: 10.1109/MIC.2016.124.
  • Q. Zhang, W. Zhao, and A. Seabaugh, Low-subthreshold-swing tunnel transistors. IEEE Electron Dev. Lett. 27 (4), 297 (2006). DOI: 10.1109/LED.2006.871855.
  • W. Y. Choi et al., Tunneling field-effect transistors (TFETs) with subthreshold swing (SS) less than 60 mV/dec, IEEE Electron. Dev. Lett. 28 (8), 743 (2007)., in Aug. DOI: 10.1109/LED.2007.901273.
  • S. Salahuddin and S. Datta, Use of negative capacitance to provide voltage amplification for low power nanoscale devices, Nano Lett. 8 (2), 405 (2008). DOI: 10.1021/nl071804g.
  • A. I. Khan et al., Ferroelectric negative capacitance MOSFET: capacitance tuning & antiferroelectric operation, IEDM Tech. Dig 11.3.1 (2011).
  • S. George et al., Device circuit co design of FEFET based logic for low voltage processors, Proc. IEEE Comput. Soc. Annu. Symp. VLSI (ISVLSI), Pittsburgh, PA, USA, 2016, pp. 649–654.
  • A. I. Khan et al., Experimental evidence of ferroelectric negative capacitance in nanoscale heterostructures. Appl. Phys. Lett. 99 (11), 113501 (2011).
  • T. S. Böscke et al., Ferroelectricity in hafnium oxide: CMOS compatible ferroelectric field effect transistors, 2011 International Electron Devices Meeting, 2011., Washington, DC, pp. 24.5.1–24.5.4. DOI: 10.1109/IEDM.2011.6131606.
  • D. Bhattacharya and N. K. Jha, FinFETs: from devices to architectures. Adv. Electron. 2014, 1 (2014). vol. (2014). DOI: 10.1155/2014/365689.
  • T. S. Böscke et al., Ferroelectricity in hafnium oxide thin films. Appl. Phys. Lett. 99 (10), 102903 (2011)., Sep. DOI: 10.1063/1.3634052..
  • C. Lin et al., Effects of the variation of ferroelectric properties on negative capacitance FET characteristics. IEEE Trans. Electron. Dev. 63 (5), 2197 ( 2016). DOI: 10.1109/TED.2016.2514783.
  • A. Sharma and K. Roy, Design space exploration of hysteresis-free HfZrOx-based negative capacitance FETs, IEEE Electron. Dev. Lett. 38 (8), 1165 (2017). DOI: 10.1109/LED.2017.2714659.
  • H. Ota et al., Structural advantages of silicon-on-insulator FETs over FinFETs in steep subthreshold-swing operation in ferroelectric-gate FETs, Jpn. J. Appl. Phys. 56 (4S), 04CD10 (2017)., https://doi.org/10.7567/JJAP.56.04CD10
  • A. Jain and M. A. Alam, Proposal of a hysteresis-free zero subthreshold swing field-effect transistor. IEEE Trans. Electron Dev. 61 (10), 3546 (2014). DOI: 10.1109/TED.2014.2347968.
  • J. P. Duarte et al., Compact models of negative-capacitance FinFETs: Lumped and distributed charge models, 2016 IEEE International Electron Devices Meeting (IEDM), 2016., San Francisco, CA, pp. 30.5.1–30.5.4. DOI: 10.1109/IEDM.2016.7838514.
  • S. Khandelwal et al., Impact of parasitic capacitance and ferroelectric parameters on negative capacitance FinFET characteristics, IEEE Electron. Dev. Lett. 38 (1), 142 (2017)., in Jan. DOI: 10.1109/LED.2016.262834.
  • T. Dutta et al., Impact of process variations on negative capacitance FinFET devices and circuits. IEEE Electron Dev. Lett. 39 (1), 147 (2018). DOI: 10.1109/LED.2017.2770158.
  • H. Lee and P. Su, Suppressed Fin-LER induced variability in negative capacitance FinFETs, IEEE Electron. Dev. Lett. 38 (10), 1492 (2017). DOI: 10.1109/LED.2017.2737025.
  • H. Lee, K. Tseng, and P. Su, Interface discrete trap induced variability for negative capacitance FinFETs, 2018 International Symposium on VLSI Technology, Systems and Application (VLSI-TSA), 2018., Hsinchu, pp. 1–2. DOI: 10.1109/VLSI-TSA.2018.8403836.
  • S. Huang, and P. Su, Investigation of fin-width sensitivity of threshold voltage for InGaAs/Si channel negative-capacitance FinFETs, 2018 IEEE 2nd Electron Devices Technology and Manufacturing Conference (EDTM), 2018., Kobe, pp. 16–18. DOI: 10.1109/EDTM.2018.8421518.
  • H. F. Dadgour et al., Grain-orientation induced work function variation in nanoscale metal-gate transistors–Part I: modeling, analysis, and experimental validation. IEEE Trans. Electron. Dev. 57 (10), 2504 (2010).
  • Y. Li et al., Process-variation effect, metal-gate work-function fluctuation, and random-dopant fluctuation in emerging CMOS technologies, IEEE Trans. Electron. Dev. 57 (2), 437 (2010).
  • X. Wang et al., Statistical threshold-voltage variability in scaled decananometer bulk HKMG MOSFETs: A full-scale 3-D simulation scaling study, IEEE Trans. Electron. Dev. 58 (8), 2293 (2011).
  • K. M. Choi et al., Influence of preferred gate metal grain orientation on tunneling FETs, in IEEE Trans. Electron. Dev. 62 (4), 1353April (2015). DOI: 10.1109/TED.2015.2399018.
  • S. M. Nawaz, S. Dutta, and A. Mallik, Comparison of gate-metal work function variability between Ge and Si p-channel FinFETs, IEEE Trans. Electron. Dev. 62 (12), 3951 (2015).
  • R. Saha, B. Bhowmick, and S. Baishya, Statistical dependence of gate metal work function on various electrical parameters for an n-channel Si Step-FinFET, IEEE Trans. Electron Devices 64 (3), 969 (2017). in March DOI: 10.1109/TED.2017.2657233.
  • Sentaurus Device User Guide, Synopsys, Inc., 2011.
  • K. Li et al., Sub-60mV-swing negative-capacitance FinFET without hysteresis, 2015 IEEE International Electron Devices Meeting (IEDM), 2015., Washington, DC, pp. 22.6.1-22.6.4. DOI: 10.1109/IEDM.2015.7409760.
  • S. Mueller et al., Incipient ferroelectricity in Al-doped HfO2 thin films, Adv. Funct. Mater. 22 (11), 2412 (2012). DOI: 10.1002/adfm.201103119..
  • M. E. Lines, and A. M. Glass, Principles and applications of ferroelectrics and related materials (Oxford University Press, Oxford, U.K., 1979 Chap. 3).
  • A. Starkov, and I. Starkov, Asymptotic description of the time and temperature hysteresis in the framework of Landau–Khalatnikov equation, Ferroelectrics 461 (1), 50 (2014). –2014. 10.1080/00150193.2014.889544

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.