95
Views
0
CrossRef citations to date
0
Altmetric
Articles

Tuning the electronic and magnetic properties of hydrogen saturated zigzag silicene nanoribbon doped with B atoms chain

, &
Pages 77-87 | Received 07 Oct 2019, Accepted 11 May 2020, Published online: 11 Jan 2021

References

  • K. Wu et al., High-performance mode-locked and Q-switched fiber lasers based on novel 2D materials of topological insulators, transition metal dichalcogenides and black phosphorus: review and perspective, Opt. Commun. 406, 214 (2018).
  • K. S. Novoselov et al., Electric field effect in atomically thin carbon films, Science 306 (5696), 666 (2004).
  • L. Song et al., Large scale growth and characterization of atomic hexagonal boron nitride layers, Nano Lett. 10 (8), 3209 (2010). DOI: 10.1021/nl1022139.
  • L. Chen et al., Evidence for Dirac fermions in a honeycomb lattice based on silicon, Phys. Rev. Lett. 109 (5), 056804 (2012). DOI: 10.1103/PhysRevLett.109.056804.
  • J. Xiao et al. , Theoretical predictions on the electronic structure and charge carrier mobility in 2D phosphorus sheets, Sci. Rep. 5, 9961 (2015). DOI: 10.1038/srep09961.
  • M. Q. Long et al., Effects of Van der Waals interaction and electric field on the electronic structure of bilayer MoS2, J. Phys. Condens. Matter. 26 (40), 405302 (2014). DOI: 10.1088/0953-8984/26/40/405302.
  • Y. Zhou, MX (M = Ge, Sn; X = S, Se) sheets: theoretical prediction of new promising electrode materials for Li ion batteries, J. Mater. Chem. A. 4 (28), 10906 (2016).
  • B. W. Zeng et al., Strain engineering on electronic structure and carrier mobility in monolayer GeP3, J. Phys. D Appl. Phys. 51 (23), 235302 (2018).
  • S. Sun et al., Novel two-dimensional semiconductor SnP3: high stability, tunable bandgaps and high carrier mobility explored using first-principles calculations, J. Mater. Chem. A. 6 (25), 11890 (2018).
  • C. H. Park et al., Energy gaps and stark effect in boron nitride nanoribbons, Nano Lett. 8 (8), 2200 (2008). DOI: 10.1021/nl080695i.
  • Y. L. Mao et al., Design lithium storage materials by lithium adatoms adsorption at the edges of zigzag silicene nanoribbon: a first principle study, Appl. Surf. Sci. 406, 161 (2017).
  • J. Xiao et al., Electronic structures and carrier mobilities of blue phosphorus nanoribbons and nanotubes: a first principles study, J. Phys. Chem. C. 120 (8), 4638 (2016).
  • J. Xiao et al., First-principles prediction of the charge mobility in black phosphorus semiconductor nanoribbons, J. Phys. Chem. Lett. 6 (20), 4141 (2015). DOI: 10.1021/acs.jpclett.5b01644.
  • Y. Cai et al., Polarity-reversed robust carrier mobility in monolayer MoS2 nanoribbons, J. Am. Chem. Soc. 136 (17), 6269 (2014). DOI: 10.1021/ja4109787.
  • Z. Q. Fan et al., Tunable electronic structures of GeSe nanosheets and nanoribbons, J. Phys. Chem. C. 121 (26), 14373 (2017).
  • B. Xu et al., Electronic and magnetic properties of zigzag graphene nanoribbon with one edge saturated, Appl. Phys. Lett. 96 (16), 163102 (2010).
  • Z. X. Xie et al., Reduction of phonon thermal conductance in isotopic graphene nanoribbon superlattices, Sci. China Phys. Mech. Astron. 60 (10), 107821 (2017).
  • Z. X. Xie et al., Effect of topological line defects on electron-derived thermal transport in zigzag graphene nanoribbons, Carbon 113, 292 (2017).
  • M. J. Li et al., Half-metallicity and spin-polarization transport properties in transition-metal atoms single-edge-terminated zigzag α-graphyne nanoribbons, Org. Electron. 44, 168 (2017).
  • R. Faccio et al., Mechanical properties of graphene nanoribbons, J. Phys. Condens. Matter. 21 (28), 285304 (2009). DOI: 10.1088/0953-8984/21/28/285304.
  • W. Su, A four-port ultra-compact terahertz splitting filter based on graphene nanoribbon, IEEE Photon. Technol. Lett. 31 (1), 86 (2019).
  • P. De Padova et al., sp2-like hybridization of silicon valence orbitals in silicene nanoribbons, Appl. Phys. Lett. 98 (8), 081909 (2011).
  • M. R. Tchalala et al., Formation of one-dimensional self-assembled silicon nanoribbons on Au(110)-(2 × 1), Appl. Phys. Lett 102, 083107 (2013).
  • M. E. Dávila et al., Comparative structural and electronic studies of hydrogen interaction with isolated versus ordered silicon nanoribbons grown on Ag(110), Nanotechnology 23 (38), 385703 (2012). DOI: 10.1088/0957-4484/23/38/385703.
  • G. Guo et al., The ferromagnetic and half-metal properties of hydrogen adatoms, fluorine adatoms and boron adatoms adsorbed at edges of zigzag silicene nanoribbon, Phys. E. 116, 113733 (2020).
  • Y. Ding and Y. L. Wang, Electronic structures of reconstructed zigzag silicone nanoribbons, Appl. Phys. Lett. 104 (8), 083111 (2014).
  • Y. Ding and J. Ni, Electronic structures of zigzag silicene nanoribbons with asymmetric sp2-sp3 edges, Appl. Phys. Lett. 95 (8), 083115 (2009).
  • Y. N. Yang, J. M. Zhang, and K. W. Xu, First-principles study of electronic properties of F-terminated silicon nanoribbons, Phys. E. 57, 21 (2014).
  • T. Marmolejo and M. Juan, Review on graphene nanoribbon devices for logic applications, Microelectron. J. 48, 18 (2016).
  • T. B. Martins et al., Electronic and transport properties of boron-doped graphene nanoribbons, Phys. Rev. Lett. 98 (19), 196803 (2007). DOI: 10.1103/PhysRevLett.98.196803.
  • S. Tang and Z. Cao, Carbon-doped zigzag boron nitride nanoribbons with widely tunable electronic and magnetic properties: insight from density functional calculations, Phys. Chem. Chem. Phys. 12 (10), 2313 (2010). DOI: 10.1039/b920754f.
  • C. Guo et al., Modulation of electronic transport properties in armchair phosphorene nanoribbons by doping and edge passivation, Sci. Rep. 7 (1), 12799 (2017). DOI: 10.1038/s41598-017-13212-7.
  • Y. J. Dong et al., Half-metallicity in aluminum-doped zigzag silicene nanoribbons, J. Phys. D Appl. Phys. 47 (10), 105304 (2014).
  • Y. S. Liu et al. , Multi-functional spintronic devices based on boron- or aluminum-doped silicene nanoribbons, Nanotechnology 29 (12), 125201 (2018). DOI: 10.1088/1361-6528/aaa999.
  • Q. G. Jiang et al., Tuneable electronic and magnetic properties of hybrid silicene/silicane nanoribbons induced by nitrogen doping, Thin Solid Films 653, 126 (2018).
  • Y. L. Song et al., Structural and electronic properties of a single C chain doped zigzag silicene nanoribbon, Phys. E. 53, 173 (2013).
  • D. B. Lu et al., Optical properties of a single carbon chain-doped silicene nanoribbon, J. Electron. Mater. 47 (8), 4585 (2018).
  • G. Kresse and J. Furthmüller, Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set, Phys. Rev. B. 54 (16), 11169 (1996). DOI: 10.1103/physrevb.54.11169.
  • G. Kresse and D. Joubert, From ultrasoft pseudopotentials to the projector augmented-wave method, Phys. Rev. B. 59 (3), 1758 (1999).
  • J. P. Perdew et al., Atoms, molecules, solids, and surfaces: applications of the generalized gradient approximation for exchange and correlation, Phys. Rev. B. 46 (11), 6671 (1992). DOI: 10.1103/physrevb.46.6671.
  • D. R. Bowler and A. Michaelides, Van der Waals density functionals applied to solids, Phys. Rev. B 83, 195131 (2011).
  • F.-B. Zheng et al., Novel electronic and magnetic properties in N or B doped silicene nanoribbons, J. Mater. Chem. C. 1 (15), 2735 (2013).
  • Y. L. Mao et al., Evolution of the electronic and magnetic properties of zigzag silicene nanoribbon used for hydrogen storage material, Int. J. Hydrog. Energy 42 (44), 27184 (2017).
  • M. Sun et al., Electronic and magnetic properties of 4d series transition metal substituted graphene: a first-principles study, Carbon 120, 265 (2017).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.