120
Views
3
CrossRef citations to date
0
Altmetric
Articles

Dielectric spectroscopy and electrical conductivity measurements of a series of orthoconic antiferroelectric liquid crystalline esters

, , , &

References

  • R. Dabrowski et al., Characterizing Antiferroelectric Liquid Crystal Materials for Display Applications in Functional Materials, edited by K. Grassie et al., (Weinheim: Wiley-VCH Verlag GmbH & Co. KGaA, 2000), Vol. 13, pp. 121–126.
  • N. Yamamoto et al., Full-colour antiferroelectric liquid crystal display, Ferroelectrics 149 (1), 295 (1993). DOI: 10.1080/00150199308217301
  • R. B. Meyer et al., Ferroelectric liquid crystals, J. Phyique. Lett. 36 (3), 69 (1975). DOI: 10.1051/jphyslet:0197500360306900.
  • H. Coles, and S. Morris, Liquid-crystal lasers, Nature Photon. 4 (10), 676 (2010).
  • W.-K. Hong et al., Programmable ZnO nanowire transistors using switchable polarization of ferroelectric liquid crystal, Appl. Phys. Lett. 102 (5), 053504 (2013). DOI: 10.1063/1.4791561
  • A. M. Levelut et al., Two new mesophases in a chiral compound, J. Phys. France. 44 (5), 623 (1983). DOI: 10.1051/jphys:01983004405062300.
  • A. D. L. Chandani et al., Tristable switching in surface stabilized ferroelectric liquid crystals with a large spontaneous polarization, Jpn. J. Appl. Phys. 27 (5A), L729 (1988). DOI:10.1143/jjap.27.l729.
  • A. D. L. Chandani et al., Antiferroelectric chiral smectic phases responsible for the tristable switching in MHPOBC, Jpn. J. Appl. Phys. 28 (Part 2, No. 7), L1265 (1989). DOI: 10.1143/JJAP.28.L1265.
  • D. Miyajima et al. , Ferroelectric columnar liquid crystal featuring confined polar groups within core-shell architecture, Science 336 (6078), 209 (2012). DOI: 10.1126/science.1217954.
  • D. Miyajima et al., Columnar liquid crystal with a spontaneous polarization along the columnar axis, J. Am. Chem. Soc. 132 (25), 8530 (2010). DOI: 10.1021/ja101866e.
  • S. S. Choi et al., Electrically tuneable liquid crystal photonic bandgaps, Adv. Mater. 21 (38â–39), 3915 (2009).
  • S. S. Choi et al., Wavelength tuning the photonic band gap in chiral nematic liquid crystals using electrically commanded surface, Appl. Phys. Lett. 91 (23), 231110 (2007).
  • K. D’havé et al., Antiferroelectric liquid crystals with 45° tilt – a new class of promising electro optic materials, Ferroelectrics 244, 115 (2000). DOI: 10.1080/00150190008228422.
  • P. Rudquist, Orthoconic antiferroelectric liquid crystals, Liq. Cryst. 40 (12), 1678 (2013). DOI: 10.1080/02678292.2013.828331.
  • W. Drzewiński, R. Dąbrowski, and K. Czupryński, Orthoconic antiferroelectrics: Synthesis and mesomorphic properties of optically active (S)-(+)-4-(1methylheptyloxycarbonyl) phenyl-4′-(fluoroalkanoyloxyalkoxy) biphenyl-4-carboxylates and 4′-(alkanoyloxyalkoxy) biphenyl-4-carboxylates, Pol. J. Chem. 76, 273 (2002). DOI: 10.1002/chin.200220067.
  • W. Piecek et al., The orthoconic antiferroelectric smectic liquid crystals and their engineering by doping with homo- and heterostructural compounds, Phase Transitions 85 (10), 910 (2012). DOI: 10.1080/01411594.2012.711832.
  • A. Chełstowska et al., The influence of antiferroelectric compounds on helical pitch of orthoconic W-1000 mixture, Liq. Cryst. 41 (6), 812 (2014). DOI: 10.1080/02678292.2014.885601.
  • M. Czerwiński, and M. Tykarska, Helix parameters in bi and multicomponent mixtures composed of orthoconic antiferroelectric liquid crystals with three ring molecular core, Liq. Cryst. 41 (6), 850 (2014). DOI:10.1080/02678292.2014.884248.
  • A. Mishra et al., Dielectric and switching parameters of para-, ferro and antiferroelectric phases of (S)-(+)-4-(1-methylheptyloxycarbonyl) phenyl 4-(6-perfluorooctanoyloxyhex-1-oxy) biphenyl-4-carboxylate, Liq. Cryst. 40 (5), 699 (2013). DOI: 10.1080/02678292.2013.765972.
  • M. B. Pandey, R. Verma, and R. Dhar, Dielectric and electro-optical properties of anti- ferroelectric liquid crystalline materials, Isr. J. Chem. 52 (10), 895 (2012). DOI: 10.1002/ijch.201200041.
  • A. Pramanik et al., Electro-optical properties of a new series of fluorinated antiferroelectric orthoconic liquid crystalline esters, Liq. Cryst. 42 (3), 412 (2015). DOI: 10.1080/02678292.2014.996792.
  • S. S. Roy, T. P. Majumder, and S. K. Roy, Soft mode dielectric relaxation under the influence of bias electric field of a ferroelectric liquid crystal mixture, Mol. Cryst. Liq. Cryst. Sci. Technol. Sect. A 304 (1), 315 (1997). DOI: 10.1080/10587259708046976.
  • S. Havriliak, and S. Negami, A complex plane analysis of α‐dispersions in some polymer systems, J. Polym. Sci. C Polym. Symp. 14 (1), 99 (2007). DOI: 10.1002/polc.5070140111.
  • L. Marino et al., Dielectric characterisation of an orthoconic antiferroelectric liquid crystal mixture, Mol. Cryst. Liq. Cryst. 558 (1), 120 (2012). DOI: 10.1080/15421406.2011.653717.
  • P. Perkowski, Numerical elimination methods of ITO cell contribution to dielectric spectra of ferroelectric liquid crystals, Opto-Electron. Rev. 19 (2), 176 (2011). DOI: 10.2478/s11772-011-0002-x.
  • S. Ghosh et al., Dielectric relaxation spectroscopy and electro-optic studies of a new, partially fluorinated orthoconic antiferroelectric liquid crystal material exhibiting V-shaped switching, Liq. Cryst. 37 (4), 369 (2010). DOI: 10.1080/02678291003611367.
  • Y. P. Panarin, O. Kalinovskaya, and J. K. Vij, The investigation of the relaxation processes in antiferroelectric liquid crystals by broad band dielectric and electro-optic spectroscopy, Liq. Cryst. 25 (2), 241 (1998). DOI: 10.1080/026782998206399.
  • S. L. Srivastava, and R. Dhar, Characteristic time of ionic conductance and electrode polarization capacitance in some organic liquids by low frequency dielectric spectroscopy, Indian J. Pure Appl. Phys. 29, 745 (1991).
  • S. Kumari, I. M. L. Das, and R. Dabrowski, Effect of DC bias and cell thickness on the characteristic dielectric parameters of the relaxation modes of an antiferroelectric liquid crystal, J. Mol. Liq. 158 (1), 1 (2011). DOI:10.1016/j.molliq.2010.09.011.
  • A. Kumar et al., Thermodynamic and dielectric studies on antiferroelectric liquid crystal (S) -4-(1-methylheptyloxycarbonyl) phenyl 4-(6-heptanoyloxyhex-1-oxy) biphenylate, Phase Transitions 80 (3), 231 (2007). DOI: 10.1080/01411590601136907.
  • T. Ray et al., Influence of ionic conductivity and interfacial charges on the relaxation dynamics of smectic phases of an antiferroelectric material, J. Mol. Liq. 139 (1–3), 35 (2008). DOI:10.1016/j.molliq.2007.10.010.
  • M. B. Pandey, R. Dabrowski, and R. Dhar, Investigation of relaxation processes in anticlinicsmectic C* (SmCA*) phase of Liquid Crystals by dielectric spectroscopy, Physica B 387 (1–2), 25 (2007). DOI: 10.1016/j.physb.2006.03.023.
  • Khushboo , Dielectric and polarization switching studies in nickel nanoparticles dispersed ferroelectric liquid crystal mixtures, Integr. Ferroelectr. 184, 192 (2017). DOI: 10.1080/10584587.2017.1368657.
  • P. P. Kumar, and S. Yashonath, Ionic conduction in the solid state, J. Chem. Sci. 118 (1), 112 (2006). DOI: 10.1007/BF02708775.
  • M. Bock et al., Electrical conductivity of liquid crystal mixtures with induced smectic phases, Mol. Cryst. Liq. Cryst. 45 (3–4), 221 (1978). DOI: 10.1080/00268947808085005.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.