178
Views
2
CrossRef citations to date
0
Altmetric
Articles

Effect of Li doping on dielectric properties of Na1−xKxNbO3, x = 0.500, morphotropic phase region

ORCID Icon &
Pages 122-131 | Received 04 Jan 2020, Accepted 14 Jul 2020, Published online: 11 Jan 2021

References

  • J. B. Goodenough, Electronic and ionic transport properties and other physical aspects of perovskites, Rep. Prog. Phys. 67 (11), 1915 (2004). DOI: 10.1088/0034-4885/67/11/R01.
  • J. Rödel et al., Perspective on the development of lead‐free piezoceramics, J. Am. Ceram. Soc. 92 (6), 1153 (2009). DOI: 10.1111/j.1551-2916.2009.03061.x.
  • J. Kuwata, K. Uchino, and S. Nomura, Dielectric and piezoelectric properties of 0.91Pb(Zn1/3Nb2/3)O3-0.09PbTiO3 single crystals, Jpn. J. Appl. Phys. 21 (Part 1, No. 9), 1298 (1982). DOI: 10.1143/JJAP.21.1298.
  • S. E. Park and T. R. Shrout, Ultrahigh strain and piezoelectric behavior in relaxor based ferroelectric single crystals, J. Appl. Phys. 82 (4), 1804 (1997). DOI: 10.1063/1.365983.
  • Y.-M. Chiang, G. W. Farrey, and A. N. Soukhojak, Lead-free high-strain single-crystal piezoelectrics in the alkaline–bismuth–titanate perovskite family, Appl. Phys. Lett. 73 (25), 3683 (1998). DOI: 10.1063/1.122862.
  • B. Chu et al., Electrical properties of Na1/2Bi1/2TiO3–BaTiO3 ceramics, J. Eur. Ceram. Soc. 22 (13), 2115 (2002). DOI: 10.1016/S0955-2219(02)00027-4.
  • S.-E. Park, S.-J. Chung, and I.-T. Kim, Ferroic phase transitions in (Na1/2Bi1/2)TiO3 crystals, J. Am. Ceram. Soc. 79 (5), 1290 (1996). DOI: 10.1111/j.1151-2916.1996.tb08586.x.
  • K. Kakimoto, I. Masuda, and H. Ohsato, Ferroelectric and piezoelectric properties of KNbO3 ceramics containing small amounts of LaFeO3, Jpn. J. Appl. Phys. 42 (Part 1, No. 9B), 6102 (2003). DOI: 10.1143/JJAP.42.6102.
  • G. Shirane, R. Newnham, and R. Pepinsky, Dielectric properties and phase transitions of NaNbO3 and (Na,K)NbO3, Phys. Rev. 96 (3), 581 (1954). DOI: 10.1103/PhysRev.96.581.
  • L. Egerton and D. M. Dillon, Piezoelectric and dielectric properties of ceramics in the system potassium-sodium niobate, J. Am. Ceram. Soc. 42 (9), 438 (1959). DOI: 10.1111/j.1151-2916.1959.tb12971.x.
  • R. E. Jaeger and L. Egerton, Hot pressing of potassium‐sodium niobates, J. Am. Ceram. Soc. 45 (5), 209 (1962). DOI: 10.1111/j.1151-2916.1962.tb11127.x.
  • G. H. Haertling, Properties of hot-pressed ferroelectric alkali niobate ceramics, J. Am. Ceram. Soc. 50 (6), 329 (1967). DOI: 10.1111/j.1151-2916.1967.tb15121.x.
  • B. Malic et al., Sintering of lead-free piezoelectric sodium potassium niobate ceramics, Materials 8 (12), 8117 (2015). DOI: 10.3390/ma8125449.
  • I. Coondoo, N. Panwar, and A. Kholkin, Lead-free piezoelectrics: current status and perspectives, J. Adv. Dielect. 03 (02), 1330002 (2013). DOI: 10.1142/S2010135X13300028.
  • D. W. Baker et al., Comprehensive study of the phase diagram of KxNa1−xNbO3, Appl. Phys. Lett. 95 (9), 091903 (2009). DOI: 10.1063/1.3212861.
  • L. Wu et al., Influence of compositional ratio K/Na on physical properties in (KxNa1−x)NbO3 ceramics, J. Appl. Phys. 103 (8), 084116 (2008). DOI: 10.1063/1.2907866.
  • Y. Guo, K. Kakimoto, and H. Ohsato, Phase transitional behavior and piezoelectric properties of (Na0.5K0.5)NbO3–LiNbO3 ceramics, Appl. Phys. Lett. 85 (18), 4121 (2004). DOI: 10.1063/1.1813636.
  • H. Y. Park et al., Microstructure and piezoelectric properties of 0.95(Na0.5K0.5) NbO3–0.05BaTiO3 ceramics, Appl. Phys. Lett. 89 (6), 062906 (2006). DOI: 10.1063/1.2335816.
  • E. Hollenstein et al., Piezoelectric properties of Li- and Ta-modified (K0.5Na0.5)NbO3, Appl. Phys. Lett. 87 (18), 182905 (2005). DOI: 10.1063/1.2123387.
  • Y. Dai, X. Zhang, and G. Zhou, Phase transitional behavior in K0.5Na0.5NbO3–LiTaO3 ceramics, Appl. Phys. Lett. 90 (26), 262903 (2007). DOI: 10.1063/1.2751607.
  • Y. Saito et al., Lead-free piezoceramics, Nature 432 (7013), 84 (2004). DOI: 10.1038/nature03028.
  • G. Z. Zang et al., Perovskite (Na0.5K0.5)1-x(LiSb)xNb1-xO3 lead-free piezoceramics, Appl. Phys. Lett. 88 (21), 212908 (2006). DOI: 10.1063/1.2206554.
  • S. Zhang et al., Piezoelectric properties in perovskite 0.948(K0.5Na0.5)NbO3–0.052LiSbO3 lead-free ceramics, J. Appl. Phys. 100 (10), 104108 (2006). DOI: 10.1063/1.2382348.
  • S. Zhang et al., Characterization of lead free (K0.5Na0.5)NbO3–LiSbO3 piezoceramic, Solid State Commun. 141 (12), 675 (2007). DOI: 10.1016/j.ssc.2007.01.007.
  • S. Singh, J. Negi, and N. S. Panwar, Dielectric properties of Na1−xKxNbO3, near x = 0.5 morphotropic phase region, J. Phys. Chem. Solids 123, 311 (2018). DOI: 10.1016/j.jpcs.2018.08.018.
  • J. Negi, S. Singh, and N. S. Panwar, Structural and dielectric anomaly in Na1−XKxNbO3, at x = 0.315, Phase Transit., 92 (2), 149 (2019). DOI: 10.1080/01411594.2018.1563789.
  • S. Singh, J. Negi, and N. S. Panwar, Temperature dependent dielectric properties of (Na, K) NbO3, near equimolar composition, Ceram. Int. 45 (10), 13067 (2019). DOI: 10.1016/j.ceramint.2019.03.238.
  • A. S. Kandari, V. Lingwal, and N. S. Panwar, Morphotropic phase boundary in Na1-xKxNbO3, near x = 0.32, Solid State Commun., 150 (1-2), 74 (2010). DOI: 10.1016/j.ssc.2009.10.002.[ ]
  • A. S. Kandari et al., Composition dependent dielectric anomaly in Na1-xKxNbO3, at x = 0.475, Ferroelectrics 393 (1), 121 (2009). DOI: 10.1080/00150190903413190.
  • E. A. Wood, Polymorphism in potassium niobate, sodium niobate, and other ABO3 compounds, Acta Cryst. 4 (4), 353 (1951). DOI: 10.1107/S0365110X51001112.
  • K. Yan, and X. Ren, Multi-phase transition behaviour and large electrostrain in lead-free (K, Na, Li)NbO3 ceramics, J. Phys. D Appl. Phys. 47 (1), 015309 (2014). DOI: 10.1088/0022-3727/47/1/015309.
  • I. P. Raevskii, L. A. Reznichenko, and O. I. Prokopalo, Phase-transition and electrical-properties of ferroelectric sodium niobate-based solid-solutions, Izv. Akad. Nauk SSSR 15, 872 (1979).
  • S. Narayana Murty, K. Umakantham, and A. Bhanumathi, Ferroelectric behaviour of lanthanum doped (NaK)Nb03 ceramics, Ferroelectrics 82 (1), 141 (1988). DOI: 10.1080/00150198808201348.
  • L. E. Cross, Electric double hysteresis in (KxNa1-x)NbO3 single crystals, Nature 181 (4603), 178 (1958). DOI: 10.1038/181178a0.
  • M. H. Frey et al., The role of interfaces on an apparent grain size effeect on the dielectric properties for ferroelectric barium titanate ceramics, Ferroelectrics 206 (1), 337 (1998). DOI: 10.1080/00150199808009168.
  • B. Jaffe, W. R. Cook, and J. H. Jaffe, Piezoelectric Ceramics (Academic, New York, 1971).
  • J. Z. Rudolph, About the conduction mechanism of oxidic semiconductors at high temperatures, Naturforsch 14a, 727 (1959).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.