279
Views
11
CrossRef citations to date
0
Altmetric
Articles

Energy storage enhancement and bandgap narrowing of lanthanum and sodium co-substituted BaTiO3 ceramics

, &
Pages 153-161 | Received 13 Apr 2020, Accepted 09 Sep 2020, Published online: 11 Jan 2021

References

  • Y. Yang et al., Enhanced energy conversion efficiency in the surface modified BaTiO3 nanoparticles/polyurethane nanocomposites for potential dielectric elastomer generators, Nano Energy 59, 363 (2019). DOI: 10.1016/j.nanoen.2019.02.065.
  • S. Manotham et al., Large electric field-induced strain and a large improvement in the energy density of bismuth sodium-potassium titanate-based piezoelectric ceramics, J. Alloys Compd. 739, 457 (2018). DOI: 10.1016/j.jallcom.2017.12.175.
  • P. Ren et al., Colossal permittivity in niobium doped BaTiO3 ceramics annealed in N2, Scr. Mater. 146, 110 (2018).
  • M. Zhao et al. , BaTiO3/MWNTs/polyvinylidene fluoride ternary dielectric composites with excellent dielectric property, high breakdown strength, and high-energy storage density, ACS Omega. 4 (1), 1000 (2019). DOI: 10.1021/acsomega.8b02504.
  • L. Yang et al., Ultra-high energy storage performance with mitigated polarization saturation in lead-free relaxors, J. Mater. Chem. A. 7 (14), 8573 (2019). https://DOI.ORG/10.1039/c9ta01165j.
  • A. Kumar et al., High energy storage properties and electrical field stability of energy efciency of (Pb0.89La0.11) (Zr0.70Ti0.30)0.9725O3 relaxor ferroelectric ceramics, Mater. Lett. 15, 323 (2019). DOI: 10.1007/s13391-019-00124-z.
  • H. Qi and R. Zuo, Linear-like lead-free relaxor antiferroelectric (Bi0.5Na0.5)TiO3–NaNbO3 with giant energy-storage density/efficiency and super stability against temperature and frequency, J. Mater. Chem. A. 7 (8), 3971 (2019). DOI: 10.1039/C8TA12232F.
  • H. Y. Zhou et al., CaTiO3 linear dielectric ceramics with greatly enhanced dielectric strength and energy storage density, J. Am. Ceram. Soc. 101 (5), 1999 (2018). DOI: 10.1111/jace.15371.
  • H. Yang et al., A novel lead-free ceramic with layered structure for high energy storage applications, J. Alloys Compd. 773, 244 (2019). DOI: 10.1016/j.jallcom.2018.09.252.
  • Z. Liu et al., Antiferroelectrics for energy storage applications: a review, Adv. Mater. Technol. 3 (9), 1800111 (2018). doi:10.1002/admt.201800111.
  • D. Zhang et al., High discharge energy density at low electric field using an aligned titanium dioxide/lead zirconate titanate nanowire array, Adv Sci. 5 (2), 1700512 (2018). DOI: 10.1002/advs.201700512.
  • Z. Yu et al., Enhanced energy storage properties of BiAlO3 modified Bi0.5Na0.5TiO3-Bi0.5K0.5TiO3 lead-free antiferroelectric ceramics, Ceram. Int. 43 (10), 7653 (2017).
  • X. X. Dong et al., Structure, dielectric and energy storage properties of BaTiO3 ceramics doped with YNbO4, J. Alloys Compd. 744, 721 (2018).
  • J. Xie et al., A novel lead‐free bismuth magnesium titanate thin films for energy storage applications, J. Am. Ceram. Soc. 102 (7), 3819 (2019).
  • M. Xu et al., Enhanced energy storage performance of (1-x)(BCT-BMT)-BX lead-free relaxor ferroelectric ceramics in a broad temperature range, J. Alloys Compd. 789, 303 (2019).
  • X. W. Wang et al., Dielectric relaxation behaviour and energy storage properties in Ba1-x(Bi0.5K0.5)xTi0.85Zr0.15O3 ceramics, J. Alloys Compd. 789 (2019), 983 (2019). DOI: 10.1016/j.jallcom.2019.03.126.
  • P. Shi et al., Large energy storage properties of lead-free (1-x)(0.72Bi0.5Na0.5TiO3-0.28SrTiO3)-xBiAlO3 ceramics at broad temperature range, J. Alloys Compd. 784 (2019), 788 (2019).
  • M. S. Alkathy and K. C. James Raju, Structural, dielectric, electromechanical, piezoelectric, elastic and ferroelectric properties of lanthanum and sodium co-substituted barium titanate ceramics, J. Alloys Compd. 737, 464 (2018).
  • C. Pithan, H. Katsu, and R. Waser, Heavily donor-doped, optically translucent ferroelectric barium titanate ceramics through defect chemical engineering, CrystEngComm 21 (18), 2854 (2019).
  • G. Wang et al., Ultrahigh energy storage density lead-free multilayers by controlled electrical homogeneity, Energy Environ. Sci. 12 (2), 582 (2019). DOI: 10.1039/c8ee03287d.
  • Y. Wu et al., Enhanced energy storage properties in sodium bismuth titanate-based ceramics for dielectric capacitor applications, J. Mater. Chem. C. 7 (21), 6222 (2019). DOI: 10.1039/C9TC01239G.
  • M. Zhou et al., Achieving ultrahigh-energy storage density and energy efficiency simultaneously in sodium niobate-based lead-free dielectric capacitors via microstructure modulation, Inorg. Chem. Front. 6 (8), 2148 (2019). DOI: 10.1039/C9QI00383E.
  • N. Qu, H. Du, and X. Hao, A new strategy to realize high comprehensive energy storage properties in lead-free bulk ceramics, J. Mater. Chem. C. 7 (26), 7993 (2019). DOI: 10.1039/C9TC02088H.
  • X. Qiao et al., Bi0.5Na0.5TiO3-based relaxor ferroelectric ceramic with large energy density and high efficiency under a moderate electric field, J. Mater. Chem. C. 7 (34), 10514 (2019).
  • Z. Cai et al., High-temperature lead-free multilayer ceramic capacitors with ultrahigh energy density and efficiency fabricated via two-step sintering, J. Mater. Chem. A. 7 (24), 14575 (2019).
  • G. Liu et al., An investigation of the dielectric energy storage performance of Bi(Mg2/3Nb1/3)O3-modified BaTiO3 Pb-free bulk ceramics with improved temperature/frequency stability, Ceram. Int. 45 (15), 19189 (2019).
  • W.-B. Li et al., BaTiO3-based multilayers with outstanding energy storage performance for high-temperature capacitor applications, ACS Appl. Energy Mater. 2 (8), 5499 (2019). DOI: 10.1021/acsaem.9b00664.
  • G. Liu et al., Microstructure evolution, mechanism of electric breakdown strength, and dielectric energy storage performance of CuO modified Ba0.65Sr0.245Bi0.07TiO3 Pb-free bulk ceramics, Ceram. Int. 45 (17), 21544 (2019). DOI: 10.1016/j.ceramint.2019.07.148.
  • J. Wu et al., Perovskite Srx(Bi1−xNa0.97−xLi0.03)0.5TiO3 ceramics with polar nano regions for high power energy storage, Nano Energy 50, 723 (2018).,
  • H. Yang et al., Lead-free BaTiO3-Bi0.5Na0.5TiO3-Na0.73Bi0.09NbO3 relaxor ferroelectric ceramics for high energy storage, J. Eur. Ceram. Soc. 37 (10), 3303 (2017).
  • H. Yang et al., A lead-free relaxation and high energy storage efficiency ceramics for energy storage applications, J. Alloys Compd. 710, 436 (2017). DOI: 10.1016/j.jallcom.2017.03.261.
  • D. H. Choi et al., Energy and power densities of capacitors and dielectrics, Proceedings of the 2015 IEEE International Workshop on Integrated Power Packaging (IWIPP), 52, 2015. DOI: 10.1109/IWIPP.2015.7295976.[]
  • S. Rajan, P. M. M. Gazzali, and G. Chandrasekaran, Electrical and magnetic phase transition studies of Fe and Mn co-doped BaTiO3, J. Alloys Compd. 656, 98 (2016).
  • D. L. Wood and J. Tauc, Weak absorption tails in amorphous semiconductors, Phys. Rev. B. 5 (8), 3144 (1972).
  • S. K. Ghosh et al., Order-disorder correlation on local structure and photo-electrical properties of La3+ ion modified BZT ceramics, Eur. Phys. J. Plus 130 (4), 68 (2015).
  • M. Ganguly et al., Characterization and Rietveld refinement of A-site deficient lanthanum-doped barium titanate, J. Alloys Compd. 579, 473 (2013).
  • M. Rizwan et al., Electronic, structural and optical properties of BaTiO3 doped with lanthanum (La): insight from DFT calculation, Optik 211, 164611 (2020).
  • A. J. Moulson and J. M. Herbert, Electroceramics: Materials, Properties and Applications (Chapman and Hall, London, 1990), p. 24.
  • M. Soni et al., Structural and optical properties on Na doped BaTiO3, AIP Conference Proceedings 2100, Prof. Dinesh Varshney Memorial National Conference on Physics and Chemistry of Materials (27?28 December 2018, Indore, India), 020185 (2019).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.