93
Views
2
CrossRef citations to date
0
Altmetric
Articles

Effect of different inertia-type piezoelectric actuator masses to reduce the vibration of an active suspended handle

, &
Pages 188-205 | Received 04 Nov 2019, Accepted 22 Apr 2020, Published online: 11 Jan 2021

References

  • J. S. Chiad, B. A. Bedaiwi, and M. Y. Idrees, Analysis and mitigation of hand arm power tools vibration, J. Eng. Sustain. Dev. 20 (5), 172 (2016).
  • European Parliament and the Council of the European Union, “Directive 2002/44/EC of the European parliament and of the council,” 2012.
  • A. M. Ahmad Zhafran and M. R. Zaidi, Active vibration vontrol to attenuate hand-arm vibration from orbital sander : a mathematical model approach, in International Conference on Computer Science and Computational Mathematics, 2015, pp. 264–268.
  • D. J. Edwards and G. D. Holt, Hand-arm vibration exposure from construction tools: results of a field study. Constr. Manag. Econ. 24 (2), 209 (2006).
  • R. Brauch, Vibration hazards in the workplace: the basics of risk assessment. Health Safety Execut, 2 (2), 1 (2015).
  • S. C. Huang and K. A. Lin, A new design of vibration absorber for periodic excitation. Shock Vib 2014 (5), 1 (2014). DOI: 10.1155/2014/571421.
  • Y. H. Ko, O. L. Ean, and Z. M. Ripin, The design and development of suspended handles for reducing hand-arm vibration in petrol driven grass trimmer. Int. J. Ind. Ergon. 41 (5), 459 (2011).
  • Protection from hand-arm vibration by the use of gloves: possibility or fraud, International Congress on Noise Control Engineering, 1996, pp. 1665–1669.
  • E. Sampson and J. L. Van Niekerk, Literature survey on anti-vibration gloves safety, South African, 2003.
  • R. G. Dong et al., Correlations between biodynamic characteristics of human hand-arm system and the isolation effectiveness of anti-vibration gloves. Int. J. Ind. Ergon. 35 (3), 205 (2005).
  • W. P. Smutz et al., A method for reducing adaptor misalignment when testing gloves using ISO 10819, Ann. Occup. Hyg. 46 (3), 309 (2002). DOI: 10.1093/annhyg/mef037.
  • R. G. Dong, T. W. McDowell, and D. E. Welcome, Biodynamic response at the palm of the human hand subjected to a random vibration. Ind. Health. 43 (1), 241 (2005). DOI: 10.2486/indhealth.43.241.
  • S. Zhu et al., Application of dynamic vibration absorbers in designing a vibration isolation track at low-frequency domain. Proc. Inst. Mech. Eng. Part F J. Rail Rapid Transit. 231 (5), 546 (2017).
  • J. P. D. Strydom, P. S. Heyns, and J. L. Van Niekerk, Development of a vibration-absorbing handle for rock drills, J. South African Inst. Min. Metallur. 102 (3), 167 (2002).
  • M. H. Abdul Satar et al., Characterization of the humming type noise and vibration of the automotive HVAC system, Int. J. Automot. Mech. Eng. 16, 6634 (2018).
  • P. W. J. Mechanical Vibration. NJ: John Wiley and Sons, Danvers, MA 2006.
  • P. Sood and M. Sharma, AVC of a smart plate with PZT sensor-actuator using direct method of model updating, Ferroelectrics 510 (1), 184 (2017).
  • A. Sharma et al., Performance hierarchy of piezoelectric materials for active vibration control application, Ferroelectrics 478 (1), 140 (2015).
  • M. M. Jovanović et al., Experimental studies on active vibration control of a smart composite beam using a PID controller, Smart Mater. Struct. 22 (11), 115038 (2013).
  • S. S. Heganna and J. J. Joglekar, Active vibration control of smart structure using PZT patches, Int. Multi-Conf. Inf. Process. 89, 710 (2016).
  • S. Khot et al., Active vibration control of cantilever beam by using PID based output feedback controller, J. Vib. Control 18 (3), 366 (2012).
  • P. Vithal, P. Mohindru, and P. P, Simulation performance of PID controller for higher order system, International. J. Innov. Res. Electr., Electron., Instrument. Control. Eng. 3 (8), 135 (2015).
  • H. Yatim, and I. Z. Mat Darus, Self-tuning active vibration controller using particle swarm optimization for Flexible manipulator system, WSEAS Trans. Syst. Control 9, 55 (2014).
  • M. F. Hassan et al., Vibration suppression of a handheld tool using intelligent active force control (AFC), World Congress on Engineering, 2010, pp. 1636–1641.
  • Z. Liu et al., Development of an electromechanical model for piezo actuated common rail injectors. in Int. Conf. Intell. Comput. Technol. Autom., Changsha, China 2010, pp. 98–101.
  • T. C. Yuan, J. Yang, and L. Q. Chen, Nonlinear vibration analysis of a circular composite plate harvester via harmonic balance. Acta Mech. Sin. 35 (4), 912 (2019).
  • J. Yang, Y. Suematsu, and Z. Kang, Two-degree-of-freedom controller to reduce the vibration of vehicle engine-body system. IEEE Trans. Contr. Syst. Technol. 9 (2), 295 (2001).
  • A. A. Hanieh and A. Preumont, Multi-axis vibration isolation using different active techniques of frequency reduction. J. Vib. Control 17 (5), 759 (2011).
  • L. Benassi and S. J. Elliott, Global control of a vibrating plate using a feedback-controlled inertial actuator. J. Sound Vib. 283 (1/2), 69 (2005).
  • L. Benassi, S. J. Elliott, and P. Gardonio, Active vibration isolation using an inertial actuator with local force feedback.pdf. J. Sound Vib. 276 (1/2), 157 (2004).
  • T. Kamada et al., Active vibration control of flexural-shear type frame structures with smart structures using piezoelectric actuators, Smart Mater. Struct. 7 (4), 479 (1998).
  • S. B. Choi, and S. R. Hong, Active vibration control of a flexible structure using an inertial type piezoelectric mount. Smart Mater. Struct. 16 (1), 25 (2007).
  • A. Z. Ahmad Mazlan and Z. Mohd Ripin, The effective frequency range of an active suspended handle based on the saturation effects of a piezo stack actuator, J. Vib. Control 23 (5), 752 (2017).
  • A. Zhafran, A. Mazlan, and Z. M. Ripin, Structural dynamic modification of an active suspended handle with a parallel coupled piezo stack actuator, Proc. Inst. Mech. Eng. Part I J. Syst. Control Eng 230 (2), 130 (2015).
  • C. Linder and C. Miehe, Effect of electric displacement saturation on the hysteretic behavior of ferroelectric ceramics and the initiation and propagation of cracks in piezoelectric ceramics. J. Mech. Phys. Solids 60 (5), 882 (2012).
  • L. E. Ooi and Z. M. Ripin, Optimization of an engine mounting system with consideration of frequency-dependent stiffness and loss factor, J. Vib. Control 22 (10), 2406 (2016).
  • F. Braghin, S. Cinquemani, and F. Resta, A model of magnetostrictive actuators for active vibration control, Sensors Actuat. A. Phys. 165 (2), 342 (2011).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.