152
Views
1
CrossRef citations to date
0
Altmetric
Research Article

Energy storage and dielectric properties of PLZST-based antiferroelectric ceramics doped with BiNbO4

, , , , &
Pages 1-12 | Received 16 Mar 2020, Accepted 12 Jul 2020, Published online: 09 Mar 2021

Reference

  • C. Liu et al., Advanced materials for energy storage, Adv. Mater. 22 (8), E28 (2010). DOI: 10.1002/adma.200903328.
  • J. Huang et al., Improvement of dielectric and energy storage properties in BaTiO3 ceramics with BiNbO4 modified, Ferroelectrics 510 (1), 8 (2017). DOI: 10.1080/00150193.2017.1325709.
  • J. Liu et al., Significantly enhanced energy-storage density in the strontium barium niobate-based/titanate-based glass-ceramics, J. Am. Ceram. Soc. 100 (2), 506 (2017). DOI: 10.1111/jace.14627.
  • X. Dong et al., Structure, dielectric and energy storage properties of BaTiO3 ceramics doped with YNbO4, J. Alloys Compd. 744, 721 (2018). DOI: 10.1016/j.jallcom.2018.01.276.
  • P. Zhang et al., Two-step sintering for improving the energy storage properties of 0.8BaTiO3-0.2BiYO3 ceramics, J. Mater. Sci: Mater. Electron. 29 (3), 2471 (2018). DOI: 10.1007/s10854-017-8168-8.
  • Y. Zheng et al., Dielectric and energy storage properties of Ba0.65Sr0.35TiO3 ceramics modified by BiNbO4, J. Electron. Mater. 47 (5), 2673 (2018). DOI: 10.1007/s11664-018-6101-4.
  • N. H. Fletcher, A. D. Hilton, and B. W. Ricketts, Optimization of energy storage density in ceramic capacitors, J. Phys. D. Appl. Phys. 29 (1), 253 (1996). DOI: 10.1088/0022-3727/29/1/037.
  • X. H. Hao et al., A comprehensive review on the progress of lead zirconate-based antiferroelectric materials, Mater. Sci. 63, 1 (2014). DOI: 10.1016/j.pmatsci.2014.01.002.
  • H. D. Chen et al., Dielectric breakdown strength in sol-gel derived PZT thick films, Integr. Ferroelectr. 15 (1-4), 89 (1997). DOI: 10.1080/10584589708015699.
  • T. R. Shrout, and S. Zhang, Lead-free piezoelectric ceramics: Alternatives for PZT?, J. Electroceram. 19 (1), 185 (2007). DOI: 10.1007/s10832-007-9095-5.
  • X. Hao et al., High energy-storage performance in Pb0.91La0.09(Ti0.65Zr0.35)O3 relaxor ferroelectric thin films, J. Appl. Phys. 112 (11), 114111 (2012)., DOI: 10.1063/1.4768461.
  • X. Hao et al., Energy-storage performance and electrocaloric effect in (100)-oriented Pb0.97La0.02(Zr0.95Ti0.05)O3 antiferroelectric thick films, J. Appl. Phys. 110 (6), 064109 (2011). DOI: 10.1063/1.3641983.
  • B. Ma et al., Chemical solution deposition of ferroelectric lead lanthanum zirconate titanate films on base-metal foils, J. Electroceram. 22 (4), 383 (2009). DOI: 10.1007/s10832-007-9410-1.
  • B. Ma, M. Narayanan, and U. Balachandran, Dielectric strength and reliability of ferroelectric PLZT films deposited on nickel substrates, Mater. Lett. 63 (15), 1353 (2009). DOI: 10.1016/j.matlet.2009.03.021.
  • X. Hao, Y. Zhao, and S. An, Giant thermal-electrical energy harvesting effect of Pb0.97La0.02(Zr0.75Sn0.18Ti0.07)O3 antiferroelectric thick film, J. Am. Ceram. Soc. 98 (2), 361 (2015). DOI: 10.1111/jace.13387.
  • Z. Liu et al., Temperature-dependent stability of energy storage properties of Pb0.97La0.02(Zr0.58Sn0.335Ti0.085)O3 antiferroelectric ceramics for pulse power capacitors, Appl. Phys. Lett. 106 (26), 262901 (2015). DOI: 10.1063/1.4923373.
  • X. Wang et al., Phase transition and energy storage performance in Ba-doped PLZST antiferroelectric ceramics, J. Mater. Sci: Mater. Electron. 26 (11), 9200 (2015). DOI: 10.1007/s10854-015-3612-0.
  • G. Zhang et al., High-energy storage performance of (Pb0.87Ba0.1La0.02)(Zr0.68Sn0.24Ti0.08)O3 antiferroelectric ceramics fabricated by the hot-press sintering method, J. Am. Ceram. Soc. 98 (4), 1175 (2015). DOI: 10.1111/jace.13412.
  • Q. F. Zhang et al., Effect of excess PbO on the microstructures and electric field induced strain of Pb0.97La0.02(Zr0.63Sn0.26Ti0.11)O3 antiferroelectric ceramics, Funct. Mater. Lett. 07 (01), 1350072 (2014). DOI: 10.1142/S1793604713500720.
  • X. Wang et al., High energy-storage performance and dielectric properties of antiferroelectric (Pb0.97La0.02) (Zr0.5Sn0.5-xTix)O3 ceramic, J. Alloys Compd. 655, 309 (2016). DOI: 10.1016/j.jallcom.2015.09.167.
  • A. Simon, J. Ravez, and M. Maglione, Relaxor properties of Ba0.9Bi0.067(Ti1-xZrx)O3 ceramics, Solid State Sci. 7 (8), 925 (2005). DOI: 10.1016/j.solidstatesciences.2005.04.009.
  • Z. Shen et al., BaTiO3-BiYbO3 perovskite materials for energy storage applications, J. Mater. Chem. A. 4 (22), 8913 (2016). DOI: 10.1039/C6TA90102F.
  • B. Peng et al., Giant electric energy density in epitaxial lead-free thin films with coexistence of ferroelectrics and antiferroelectrics, Adv. Electron. Mater. 1 (5), 1500052 (2015). DOI: 10.1002/aelm.201500052.
  • F. Hong et al., Dielectric relaxation in the DyMn1-xFexO3 system, J. Appl. Phys. 111 (3), 034104 (2012). DOI: 10.1063/1.3681807.
  • G. Hu et al., Fabrication and electrical properties of textured Ba(Zr0.2Ti0.8)O3- (Ba0.7Ca0.3)TiO3 ceramics using plate-like BaTiO3 particles as templates, J. Mater. Sci. Mater. Electron. 25, 1817 (2014). DOI: 10.1007/s10854-014-1804-7.
  • L. Cui et al., Relaxor behavior of (Ba, Bi)(Ti, Al)O3 ferroelectric ceramic, J. Appl. Phys. 107 (5), 054105 (2010). DOI: 10.1063/1.3327244.
  • W. Chen, X. Yao, and X. Wei, Tunability and ferroelectric relaxor properties of bismuth strontium titanate ceramics, Appl. Phys. Lett. 90 (18), 182902 (2007). DOI: 10.1063/1.2734958.
  • P. Baettig et al., Theoretical prediction of new high-performance lead-free piezoelectrics, Chem. Mater. 17 (6), 1376 (2005). DOI: 10.1021/cm0480418.
  • C. A. Randall et al., High temperature and high energy density dielectric materials, IEEE Int. Puls. Power Conf. 1, 346 (2009). DOI: 10.1109/ppc.2009.5386292.
  • H. Ogihara, C. A. Randall, and S. Trolier-McKinstry, High-energy density capacitors utilizing 0.7 BaTiO3-0.3 BiScO3 ceramics, J. Am. Ceram. Soc. 92 (8), 1719 (2009). DOI: 10.1111/j.1551-2916.2009.03104.x.
  • C. Neusel, and G. A. Schneider, Size-dependence of the dielectric breakdown strength from nano- to millimeter scale, J. Mech. Phys. Solids. 63, 201 (2014). DOI: 10.1016/j.jmps.2013.09.009.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.