76
Views
1
CrossRef citations to date
0
Altmetric
Research Article

Phenomenological approaches on the Nd3+ doped ferroelectric LaBGeO5

, &
Pages 13-26 | Received 19 May 2020, Accepted 25 Sep 2020, Published online: 09 Mar 2021

References

  • A. A. Kaminskii et al., Pure and Nd3+‐, Pr3+‐ion doped trigonal acentric LaBGeO5 single crystals nonlinear optical properties, Raman scattering, spectroscopy, crystal‐field analysis, and simulated emission of their activators, Phys. Stat. Sol. (A) 125 (2), 671 (1991). DOI: 10.1002/pssa.2211250227.
  • A. Rulmont, and P. Tarte, Lanthanide borogermanates LaBGeO5: synthesis and structural study by X-ray diffractometry and vibrational spectroscopy, J. Solid State Chem. 75 (2), 244 (1988). DOI: 10.1016/0022-4596(88)90163-6.
  • N. V. Sigaev et al., Ferroelectric-pyroelectric texture based on glass-ceramic materials containing the LaBGeO5 stillwellite-like phase, Glass Phys. Chem. 22, 117 (1996).
  • B. J. Demaske, A. Chernatynskiy, and S. R. Phillpot, First-principles investigation of ferroelectricity in LaBGeO5, J. Phys. Condens. Matter. 28 (16), 165901 (2016). DOI: 10.1088/0953-8984/28/16/165901.
  • A. Onodera et al., Thermal and dielectric properties of a new ferroelectric LaBGeO5, J. Phys. Soc. Jpn. 62 (12), 4311 (1993). DOI: 10.1143/JPSJ.62.4311.
  • S. J. Stefanovich, B. V. Mill, and A. V. Butashin, Ferroelectric and phase transition in stillwellite LaBGeO5, Kristallografiya 37, 965 (1992).
  • E. L. Belokoneva et al., Structural aspects of the 530 °C phase transition in LaBGeO5, J. Phys. Condens. Matter. 9 (17), 3503 (1997). DOI: 10.1088/0953-8984/9/17/002.
  • M. Tokunaga, Two different mechanisms of the Curie-Weiss dielectric susceptibility in ferroelectrics, J. Phys. Soc. Jpn. 57 (12), 4275 (1988). DOI: 10.1143/JPSJ.57.4275.
  • I. Hrubá et al., Optical phonons and ferroelectric phase transition in the LaBGeO5 crystal, Phys. Stat. Sol. (B) 214 (2), 423 (1999). DOI: 10.1002/(SICI)1521-3951(199908)214:2<423::AID-PSSB423>3.0.CO;2-X.
  • R. V. Pisarev, and M. Serhane, Raman scattering study of the ferroelectric LaBGeO5, Phys. Solid State 37, 2022 (1995).
  • V. Califano et al., Anisotropy in extruded lanthanum borogermanate glasses? Structural study by Raman spectroscopy, Philos. Mag. 84 (13-16), 1639 (2004). DOI: 10.1080/14786430310001644422.
  • E. V. Milov, and B. A. Strukov, Piezoelectric effect in the LaBGeO5 ferroelectric crystal, Moscow Univ. Phys. 62 (1), 48 (2007). DOI: 10.3103/S0027134907010122.
  • R. Shaltaf et al., Structural, electronic, vibrational, and dielectric properties of LaBGeO5 from first principles, J. Appl. Phys. 115 (7), 074103 (2014). DOI: 10.1063/1.4866357.
  • Y. Takahashi et al., Ferroelectric properties and second harmonic intensities of stillwellite-type (La,Ln)BGeO5 crystallized glasses, Jpn. J. Appl. Phys. 41 (Part 1, No. 6A), 3771 (2002). DOI: 10.1143/JJAP.41.3771.
  • B. A. Strukov et al., Effect of Nd3+ doping upon ferroelectric properties of LaBGeO5 crystals, Ferroelectrics 218 (1), 249 (1998). DOI: 10.1080/00150199808227152.
  • O. K. Rice, Thermodynamics of phase transitions in compressible solid lattices, J. Chem. Phys. 22 (9), 1535 (1954). DOI: 10.1063/1.1740453.
  • A. I. Larkin, and S. A. Pikin, Phase transitions of the first order but nearly of the second, Sov. Phys. JETP 29, 891 (1969).
  • G. A. Baker, and J. W. Essam, Effects of lattice compressibility on critical behaviour, Phys. Rev. Lett. 24 (9), 447 (1970). DOI: 10.1103/PhysRevLett.24.447.
  • H. Yurtseven, Phase transitions of weakly first order or nearly second order, Phase Transit. 47 (1-2), 59 (1994). DOI: 10.1080/01411599408200336.
  • H. Yurtseven, and A. Yanik, Specific heat of NH4Cl and NH4BrxCl1-x crystals close to the ferro-ordered phase, J. Chem. Soc. Pak. 31, 207 (2009).
  • H. Yurtseven, D. Kayişoğlu, and W. F. Sherman, Calculation of the specific heat for the first order, tricritical and second order phase transitions in NH4Cl, Phase Transit. 67 (2), 399 (1998). DOI: 10.1080/01411599808228749.
  • H. Yurtseven, D. V. Tirpanci, and H. Karacali, Analysis of the specific heat of Ru doped LiKSO4 close to phase transitions, High Temp. 56 (3), 462 (2018). DOI: 10.1134/S0018151X18030239.
  • A. Kiraci, Analysis of the specific heat and the free energy of [N(CH3)4]2ZnBr4 close to the ferro-paraelastic phase transition, Phase Transit. 92 (3), 249 (2019). DOI: 10.1080/01411594.2019.1566547.
  • A. Kiraci, A phenomenological study on ferroelectric pyridinium tetrafluoroborate (C5NH6) BF4, Thermochim. Acta 680, 178371 (2019). DOI: 10.1016/j.tca.2019.178371.
  • H. Yurtseven, and W. H. Sherman, Weakly first order or nearly second order phase transitions in ammonium halides, Phase Transit. 47 (1-2), 69 (1994). DOI: 10.1080/01411599408200337.
  • M. B. Smirnov et al., Lattice dynamics and phase transition in LaBGeO5, Phys. Stat. Sol. (B) 241 (5), 1017 (2004). DOI: 10.1002/pssb.200301990.
  • K. J. Lushington, and C. W. Garland, Critical heat capacity of NH4Br and NH4BrxCl1−x single crystals, J. Chem. Phys. 72 (10), 5752 (1980). DOI: 10.1063/1.438995.
  • M. Matsushita, Anomalous temperature dependence of the frequency and damping constant of phonons near Tλ in ammonium halides, J. Chem. Phys. 65 (1), 23 (1976). DOI: 10.1063/1.432804.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.