201
Views
2
CrossRef citations to date
0
Altmetric
Research Article

Size and shape effects on polarization reversal of nanoscale BaTiO3

, &
Pages 60-70 | Received 14 Jul 2020, Accepted 22 Oct 2020, Published online: 09 Mar 2021

References

  • T. Tybell, C. H. Ahn, and J. M. Triscone, Ferroelectricity in thin perovskite films, Appl. Phys. Lett. 75 (6), 856 (1999). DOI: 10.1063/1.124536.
  • D. D. Fong et al., Ferroelectricity in ultrathin perovskite films, Science 304 (5677), 1650 (2004). DOI: 10.1126/science.1098252.
  • J. Junquera, and P. Ghosez, Critical thickness for ferroelectricity in perovskite ultrathin films, Nature 422 (6931), 506 (2003). DOI: 10.1038/nature01501.
  • D. Yadlovker, and S. Berger, Uniform orientation and size of ferroelectric domains, Phys. Rev. B. 71 (18), 184112 (2005). DOI: 10.1103/PhysRevB.71.184112.
  • G. Geneste et al., Finite-size effects in BaTiO3 nanowires, Appl. Phys. Lett. 88 (11), 112906 (2006). DOI: 10.1063/1.2186104.
  • Y. Luo et al., Nanoshell tubes of ferroelectric lead zirconate titanate and barium titanate, Appl. Phys. Lett. 83 (3), 440 (2003). DOI: 10.1063/1.1592013.
  • F. D. Morrison, L. Ramsay, and J. F. Scott, High aspect ratio piezoelectric strontium–bismuth–tantalate nanotubes, J. Phys.: Condens. Matter. 15 (33), L527 (2003). DOI: 10.1088/0953-8984/15/33/103.
  • I. Rychetsky, and O. Hudak, The ferroelectric phase transition in small spherical particles, J. Phys.: Condens. Matter. 9, 4955 (1997).
  • A. N. Morozovska, E. A. Eliseev, and M. D. Glinchuk, Ferroelectricity enhancement in confined nanorods: Direct variational method, Phys. Rev. B 73, 214106 (2006).
  • M. Q. Cai et al., Nanosize confinement induced enhancement of spontaneous polarization in a ferroelectric nanowire, Appl. Phys. Lett. 95 (23), 232901 (2009). DOI: 10.1063/1.3271175.
  • W. Ma, Surface tension and curie temperature in ferroelectric nanowires and nanodots, Appl. Phys. A. 96 (4), 915 (2009). DOI: 10.1007/s00339-009-5246-7.
  • M. Alexe et al., polarization imprint and size effects in mesoscopic ferroelectric structures, Appl. Phys. Lett. 79 (2), 242 (2001). DOI: 10.1063/1.1385184.
  • G. Arlt, and H. Neumann, Internal bias in ferroelectric ceramics: Origin and time dependence, Ferroelectrics 87 (1), 109 (1988). DOI: 10.1080/00150198808201374.
  • Z. Feng, and X. Ren, Striking similarity of ferroelectric aging effect in tetragonal, orthorhombic and rhombohedral crystal structures, Phys. Rev. B. 77 (13), 134115 (2008). DOI: 10.1103/PhysRevB.77.134115.
  • Ferroelectric Materials-Synthesis and Characterization, Aime Pelaiz-Barranco, pp. 205, IntechOpen publisher. (UK, 2015). DOI: 10.5772/59294.
  • H. Lee et al., Imprint control of BaTiO3 thin films via chemically induced surface polarization pinning, Nano Lett. 16 (4), 2400 (2016). DOI: 10.1021/acs.nanolett.5b05188.
  • F. Liu et al., Unravelling and controlling hidden imprint fields in ferroelectric capacitors, Sci. Rep. 6, 25028 (2016). DOI: 10.1038/srep25028.
  • T. Gao et al., Zhaoxian Xi ng, Lifu Chen and Qing- ming Wang, J. Mater. Chem. A. 3 (18), 9965 (2015). DOI: 10.1039/C5TA01079A.
  • U. Acevedo- Salas et al., Nanostructured tetragonal barium titanate produced by the polyol and spark plasma sintering (SPS) rout, Appl. Phys. A 123 (10), 659 (2017). DOI: 10.1007/s00339-017-1267-9.
  • T. J. B. Holland, and S. A. T. Redfern, Unitcell refinement from powder diffraction data: the use of regression diagnostics, Mineral. Mag. 61 (404), 65 (1997). DOI: 10.1180/minmag.1997.061.404.07.
  • Y. Shiratori et al., Raman scattering studies on nanocrystalline BaTiO3 Part I—isolated particles and aggregates, J. Raman Spectrosc. 38 (10), 1288 (2007). DOI: 10.1002/jrs.1764.
  • M. E. Lines, and A. M. Glass, Principles and Applications of Ferroelectrics and Related Materials (Clarendon Press, Oxford, UK, 1977).
  • A. Gajović et al., Milivoj Plodinec, temperature dependent Raman spectroscopy of BaTiO3 nanorods synthesized by using a template assisted sol-gel procedure, J. Raman Spectrosc. 44 (3), 412 (2013). DOI: 10.1002/jrs.4206.
  • V. Cregan, and S. B. G. O’Brien, A note on spin-coating with small evaporation, J. Colloid Interface Sci. 314 (1), 324 (2007). DOI: 10.1016/j.jcis.2007.05.019.
  • R. Israelowitz et al., Spin coated plasmonic nanoparticle interfaces for photocurrent enhancement in thin film si solar cells, J. Nanomater. 2014, 1 (2014). DOI: 10.1155/2014/639458.
  • E. Stillwagon, and R. G. Larson, Leveling of thin films over uneven substrates during spin coating, Phys. Fluids 2 (11), 1937 (1990). DOI: 10.1063/1.857669.
  • P. A. Kralchevsky, and N. D. Denkov, Capillary forces and structuring in layers of colloid articles, Curr. Opin. Colloid Interface Sci. 6 (4), 383 (2001). DOI: 10.1016/S1359-0294(01)00105-4.
  • Y. Ito, and K. Uchino, Piezoelectricity, in Wiley Encyclopedia of Electrical and Electronics Engineering ( John Wiley & Sons, NY, 1999), Vol.16, p. 479.
  • X. Deng et al., Ferroelectric properties of nanocrystalline barium titanate ceramics, Appl. Phys. Lett. 88 (25), 252905 (2006). DOI: 10.1063/1.2213508.
  • Y. Tan et al., Unfolding Grain Size Effects in Bariumtitanate Ferroelectric Ceramics. Sci. Rep. 5, 9953 (2015). DOI: 10.1038/srep09953.
  • S. Wada et al., Preparation of [110] grain oriented barium titanate ceramics by templated grain growth method and their piezoelectric properties, Jpn. J. Appl. Phys. 46 (10B), 7039 (2007). DOI: 10.1143/JJAP.46.7039.
  • Y. Tan et al., Unfolding grain size effects in barium titanate ferroelectric ceramics, Sci. Rep. 5, 9953 (2015). DOI: 10.1038/srep09953.
  • H. Takahashi et al., Piezoelectric properties of BaTiO3 ceramics with high performance fabricated by microwave sintering, Jpn. J. Appl. Phys. 45 (9B), 7405 (2006). DOI: 10.1143/JJAP.45.7405.
  • T. Karaki et al., Lead-free piezoelectric ceramics with large dielectric and piezoelectric constants manufactured from BaTiO3 nano-powder, Jpn. J. Appl. Phys. 46 (No. 4), L97 (2007). DOI: 10.1143/JJAP.46.L97.
  • P. Pulpan et al., Microstructure control of grain-oriented barium-titanate ceramics and their piezoelectric properties, J. Korean Phys. Soc. 57 (4(1), 897 (2010). DOI: 10.3938/jkps.57.897.
  • K. J. Klabunde, and R. M. Richards, Nanoscale Materials in Chemistry (John Wiley & Sons, 2009), pp 5–10. DOI: 10.1002/9780470523674.
  • A. Gruverman, O. Auciello, and H. Tokumoto, Imaging and control of domain structures in ferroelectric thin films via scanning force microscopy, Annu. Rev. Mater. Sci. 28 (1), 101 (1998). DOI: 10.1146/annurev.matsci.28.1.101.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.