684
Views
4
CrossRef citations to date
0
Altmetric
Research Article

Investigation into surface acoustic wave sensor for DCM gas detection using COMSOL multiphysics

, , &
Pages 94-105 | Received 06 Apr 2020, Accepted 14 Jul 2020, Published online: 09 Mar 2021

References

  • R. M. White, and F. W. Voltmer, Direct piezoelectric coupling to surface elastic waves, Appl. Phys. Lett. 7 (12), 314 (1965). DOI: 10.1063/1.1754276.
  • S. Datta, Surface Acoustic Wave Devices (Prentice Hall, Englewood Cliffs, MA, 1986).
  • P. Delsing et al., The 2019 surface acoustic waves roadmap, J. Phys. D. Appl. Phys. 52 (35), 353001 (2019). DOI: 10.1088/1361-6463/ab1b04.
  • E. A. Ash, and E. G. S. Paige, Rayleigh-Wave Theory and Application (Berlin, Springer, 1985).
  • R. C. Williamson, and T. W. Bristol, Special issue on surface-acoustic-wave applications, IEEE Trans. Sonics Ultrason. 28, 2 (1981).
  • I.-T. Tang et al., Applications of piezoelectric ZnO film deposited on diamond-like carbon coated onto Si substrate under fabricated diamond SAW filter, J. Cryst. Growth 262 (1-4), 461 (2004). DOI: 10.1016/j.jcrysgro.2003.10.081.
  • Q. Jiang et al., Analysis of surface acoustic wave pressure sensors, Sens. Actuators A. 118 (1), 1 (2005). DOI: 10.1016/S0924-4247(04)00489-3.
  • M. Leonhard, and M. Ismail, Wireless measurement of temperature using surface acoustic waves sensors, IEEE Trans. Ultrason. Ferroelect. Freq. Contr. 51, 1457 (2004).
  • K. El-Shennawy, M. S. Orabi, and T. E. Taha, Simulation of high sensitivity and stability surface acoustic wave NO2 gas sensor based on amplitude variations as measurand, 22nd International Conference on Microelectronics (2000), 2000, Vol. 2, NIS, Yugoslavia, pp. 611–614.
  • H. Wohltjen, Mecharusm of operation and design conslderatlons for surface acoustic wave device vapor sensors, Sens. Actuators 5 (4), 307 (1984). DOI: 10.1016/0250-6874(84)85014-3.
  • R. Arsat et al., Graphene-like nano-sheets for surface acoustic wave gas sensor applications, Chem. Phys. Lett. 467 (4-6), 344 (2009). DOI: 10.1016/j.cplett.2008.11.039.
  • A. J. Ricco, S. J. Martin, and T. E. Zipperian, Surface acoustic wave gas sensor based on film conductivity change, Sens. Actuators 8 (4), 319 (1985). DOI: 10.1016/0250-6874(85)80031-7.
  • W. P. Jakubik et al., Bilayer structure for hydrogen detection in a surface acoustic wave sensor system, Sens. Actuators B 82 (2-3), 265 (2002). DOI: 10.1016/S0925-4005(01)01061-9.
  • W. Yang et al., Two-dimensional layered nanomaterials for gas-sensing applications, Inorg. Chem. Front. 3 (4), 433 (2016). DOI: 10.1039/C5QI00251F.
  • S. Trolier-McKinstry et al., High-performance piezoelectric crystals, ceramics, and films, Annu. Rev. Mater. Res. 48 (1), 191 (2018). DOI: 10.1146/annurev-matsci-070616-124023.
  • X. Liu et al., A survey on gas sensing technology, Sensors 12 (7), 9635 (2012). DOI: 10.3390/s120709635.
  • C. F. Estill, and A. B. Spencer, Case study: control of methylene chloride exposures during furniture stripping, Am. Ind. Hyg. Assoc. J. 57 (1), 43 (1996). DOI: 10.1080/15428119691015205.
  • R. Beauchet, P. Magnoux, and J. Mijoin, Catalytic oxidation of volatile organic compounds (VOCs) mixture (isopropanol/O-xylene) on zeolite catalysts, Catal. Today 124 (3-4), 118 (2007). DOI: 10.1016/j.cattod.2007.03.030.
  • A. Ramanavičius, A. Ramanavičienė, and A. Malinauskas, Electrochemical sensors based on conducting polymer-polypyrrole, Electrochim. Acta 51 (27), 6025 (2006). DOI: 10.1016/j.electacta.2005.11.052.
  • B.-S. Joo et al., Polymer film SAW sensors for chemical agent detection, Proceedings of the Conference on Sensing Technology, Palmerston North, New Zealand, 2005, pp. 307–310.
  • R. Lerch, Simulation of piezoelectric devices by two- and three-dimensional finite elements, IEEE Trans. Ultrason. Ferroelectr. Freq. Contr. 37 (3), 233 (1990). DOI: 10.1109/58.55314.
  • C. Ho, et al., Development of a surface acoustic wave sensor for in-situ monitoring of volatile organic compounds, Sensors 3 (7), 236 (2003). DOI: 10.3390/s30700236.
  • S. Ahmadi, Characterization of multi- and single-layer structure SAW sensor, Sensors 2004 Proce. IEEE. 3, 1129 (2004).
  • S. Tonami, A. Nishikata, and Y. Shimizu, Characteristic of leaky surface acoustic wave propagating on LiNbO3 and LiTaO3 substrates, Jpn. J. Appl. Phys. 34 (Part 1, No. 5B), 2664 (1995). DOI: 10.1143/JJAP.34.2664.
  • V. B. Raj et al., Distinct detection of liquor ammonia by ZnO/SAW sensor: study of complete sensing mechanism, Sens. Actuators B. 238, 83 (2017). DOI: 10.1016/j.snb.2016.07.040.
  • M. C. Horrillo et al., Optimization of SAW sensors with a structure ZnO-SiO2-Si to detect volatile organic compounds, Sens. Actuators B 118 (1-2), 356 (2006). DOI: 10.1016/j.snb.2006.04.050.
  • G. A. Maugin, Elastic surface waves with transverse horizontal polarization, Adv. Appl. Mech. 23, 373 (1983).
  • Z. L. Wang, and J. Song, Piezoelectric nanogenerators based on zinc oxide nanowire arrays, Science 312 (5771), 242 (2006). DOI: 10.1126/science.1124005.
  • M. Acosta et al., BaTiO3-based piezoelectrics: fundamentals, current status, and perspectives, Appl. Phys. Rev. 4 (4), 041305 (2017). DOI: 10.1063/1.4990046.
  • T. Karaki, K. Yan, and M. Adachi, Barium titanate piezoelectric ceramics manufactured by two-step sintering, Jpn. J. Appl. Phys. 46 (10B), 7035 (2007). DOI: 10.1143/JJAP.46.7035.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.