83
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Structure, physical, dielectric and magnetic properties of Zn1–xCoxO nanoparticles prepared via coprecipitation method

, , , &
Pages 164-179 | Received 01 Jul 2020, Accepted 15 Nov 2020, Published online: 09 Mar 2021

References

  • Y. Liu et al., Effects of Cr-doping on the optical and magnetic properties in ZnO nanoparticles prepared by sol–gel method, J. Alloys Compd. 486 (1-2), 835 (2009). DOI: 10.1016/j.jallcom.2009.07.076.
  • H. C. Cheng, C. F. Chen, and C. Y. Tsay, Transparent ZnO thin film transistor fabricated by sol-gel and chemical bath deposition combination method, Appl. Phys. Lett. 90 (1), 012113 (2007). DOI: 10.1063/1.2404590.
  • B. N. Pawar et al., Preparation of transparent and conducting boron-doped ZnO electrode for its application in dye-sensitized solar cells, Sol. Energy Mater. Sol. Cells 93 (4), 524 (2009). DOI: 10.1016/j.solmat.2008.12.010.
  • A. Simimol et al., Enhanced room temperature ferromagnetism in electrodeposited Co-doped ZnO nanostructured thin films by controlling the oxygen vacancy defects, J. Appl. Phys. 117 (21), 214310 (2015). DOI: 10.1063/1.4922050.
  • I. S. Edelman et al., Giant hydrogen effect on the structure and physical properties of ZnO and Co-doped ZnO films fabricated by the RF magnetron sputtering in Ar + H2 atmosphere, J. Magnet. Magnet. Mater. 489, 165461 (2019). DOI: 10.1016/j.jmmm.2019.165461.
  • G. P. Singh et al., Effect of low Co-doping on structural, optical, and magnetic performance of ZnO nanoparticles, Optik 203, 163966 (2020). DOI: 10.1016/j.ijleo.2019.163966.
  • J. Wang et al., Giant magnetoresistance in transition-metal-doped ZnO films, Appl. Phys. Lett. 88 (25), 252110 (2006). DOI: 10.1063/1.2210974.
  • S. A. Wolf et al., Spintronics: a spin-based electronics vision for the future, Science 294 (5546), 1488 (2001). DOI: 10.1126/science.1065389.
  • F. Pan et al., Ferromagnetism and possible application in spintronics of transition-metal-doped ZnO films, Mater. Sci. Eng. R 62 (1), 1 (2008). DOI: 10.1016/j.mser.2008.04.002.
  • Q. Y. Xu et al., Spin manipulation in Co-doped ZnO, Phys. Rev. Lett. 101 (7), 076601 (2008). [Database] DOI: 10.1103/PhysRevLett.101.076601.
  • B. Poornaprakash et al., Wurtzite phase Co-doped ZnO nanorods: Morphological, structural, optical, magnetic, and enhanced photocatalytic characteristics, Ceramics Inter 46 (3), 2931 (2020). DOI: 10.1016/j.ceramint.2019.09.289.
  • T. Dietl et al., Zener model description of ferromagnetism in zinc-blende magnetic semiconductors, Science 287 (5455), 1019 (2000). DOI: 10.1126/science.287.5455.1019.
  • Z. Jin et al., High throughput fabrication of transition-metal-doped epitaxial ZnO thin films: A series of oxide-diluted magnetic semiconductors and their properties, Appl. Phys. Lett. 78 (24), 3824 (2001). DOI: 10.1063/1.1377856.
  • S. Xu, and Z. L. Wang, One-dimensional ZnO nanostructures: Solution growth and functional properties, Nano Res. 4 (11), 1013 (2011). DOI: 10.1007/s12274-011-0160-7.
  • M. Abid, J. P. Abid, and J. Ph. Ansermet, Ferromagnetism at room temperature on electrodeposited Co[sup 2+]-doped ZnO thin film, J. Electrochem. Soc. 153 (8), D138 (2006). DOI: 10.1149/1.2207839.
  • V. Gandhi et al., Effect of cobalt doping on structural, optical, and magnetic properties of ZnO nanoparticles synthesized by coprecipitation method, J. Phys. Chem. C. 118 (18), 9715 (2014). DOI: 10.1021/jp411848t.
  • N. F. Djaja, D. A. Montja, and R. Saleh, The effect of Co incorporation into ZnO nanoparticles, AMPC. 03 (01), 33 (2013). DOI: 10.4236/ampc.2013.31006.
  • T. M. Hammad, J. K. Salem, and R. G. Harrison, Structure, optical properties and synthesis of Co-doped ZnO superstructures, Appl. Nanosci. 3 (2), 133 (2013). DOI: 10.1007/s13204-012-0077-9.
  • N. S. Singh, S. D. Singh, and S. K. Bandyopadhyay, Magnetic properties of Zn1–xCoxO nanoparticles, Phys. Procedia 54, 2 (2014). DOI: 10.1016/j.phpro.2014.10.029.
  • P. Mitra et al., Antibacterial and photocatalytic properties of ZnO-9-aminoacridine hydrochloride hydrate drug nanoconjugates, ACS Omega. 3 (7), 7962 (2018). DOI: 10.1021/acsomega.8b00568.
  • J. R. Torres-Hernández et al., Structural, optical and photocatalytic properties of ZnO nanoparticles modified with Cu, Mater. Sci. Semicond. Process 37, 87 (2015). DOI: 10.1016/j.mssp.2015.02.009.
  • M. El-Hilo, A. A. Dakhel, and Z. J. Yacoob, Magnetic interactions in Co2+ doped ZnO synthesised by co-precipitation method: Efficient effect of hydrogenation on the long-range ferromagnetic order, J. Magnet. Magnet. Mater 482, 125 (2019). DOI: 10.1016/j.jmmm.2019.03.053.
  • R. N. Aljawfi, F. Rahman, and D. K. Shukla, Effect of the annealing temperature on the structural and magnetic properties of ZnO nanoparticles, Mater. Lett 99, 18 (2013). DOI: 10.1016/j.matlet.2013.02.064.
  • S. Ramachandran, A. Tiwari, and J. Narayan, Zn0.9Co0.1O-based diluted magnetic semiconducting thin films, Appl. Phys. Lett. 84 (25), 5255 (2004). DOI: 10.1063/1.1764936.
  • F. C. Kartawidjaja et al., Morphology, optical, and magnetic properties of Zn1 − xCoxO nanorods grown via a wet chemical route, J. Am. Ceram. Soc 93 (11), 3798 (2010). DOI: 10.1111/j.1551-2916.2010.03922.x.
  • S. C. Wi et al., Electronic structure of Zn1 − xCoxO using photoemission and X-ray absorption spectroscopy, Appl. Phys. Lett. 84 (21), 4233 (2004). DOI: 10.1063/1.1756197.
  • J. Neamtu et al., NSTI-Nanotech (CRC Press, Boca Raton, 2008), Vol. 1, p. 238.
  • A. Chanda et al., Study of structural, optical and magnetic properties of cobalt doped ZnO nanorods, RSC Adv. 7 (80), 50527 (2017). DOI: 10.1039/C7RA08458G.
  • E. Abdeltwab, and F. A. Taher, Polar and nonpolar self-assembled Co-doped ZnO thin films: Structural and magnetic study, Thin Solid Films 636, 200 (2017). DOI: 10.1016/j.tsf.2017.06.004.
  • F. C. Van de Pol, Thin-film ZnO-properties and applications, Am. Ceram. Soc. Bull 69, 1959 (1990).
  • P. Zu et al., Ultraviolet spontaneous and stimulated emissions from ZnO microcrystallite thin films at room temperature, Solid State Commun. 103 (8), 459 (1997). DOI: 10.1016/S0038-1098(97)00216-0.
  • J.-J. Wu, S.-C. Liu, and M.-H. Yang, Room-temperature ferromagnetism in well-aligned Zn1 − xCoxO nanorods, Appl. Phys. Lett. 85 (6), 1027 (2004). DOI: 10.1063/1.1779958.
  • P. Kameli, H. Salamati, and A. Aezami, Effect of particle size on the structural and magnetic properties of La0.8Sr0.2MnO3, J. Appl. Phys. 100 (5), 053914 (2006). DOI: 10.1063/1.2345036.
  • V. D. Mote, Y. Purushotham, and B. N. Dole, Structural, morphological, physical and dielectric properties of Mn doped ZnO nanocrystals synthesized by sol–gel method, Mater. Des. 96, 99 (2016). DOI: 10.1016/j.matdes.2016.02.016.
  • J. F. Nye, Physical Properties of Crystals: their Representation by Tensors and Matrices (Oxford, NY, Oxford Science Publications, 1985).
  • V. D. Mote, Y. Purushotham, and B. N. Dole, Williamson-Hall analysis in estimation of lattice strain in nanometer-sized ZnO particles, J. Theor. Appl. Phys. 6 (1), 6 (2012). DOI: 10.1186/2251-7235-6-6.
  • M. Arshad et al., Effect of Co substitution on the structural and optical properties of ZnO nanoparticles synthesized by sol–gel route, J. Alloys Compd. 509 (33), 8378 (2011). DOI: 10.1016/j.jallcom.2011.05.047.
  • L. M. Li et al., Bandgap narrowing and ethanol sensing properties of In-doped ZnO nanowires, Nanotechnology 18 (22), 225504 (2007). DOI: 10.1088/0957-4484/18/22/225504.
  • A. Simimol et al., Enhanced room temperature ferromagnetism in electrodeposited Co-doped ZnO nanostructured thin films by controlling the oxygen vacancy defects, J. Appl. Phys. 117 (21), 214310 (2015). DOI: 10.1063/1.4922050.
  • T. F. Jaramillo et al., Automated electrochemical synthesis and photoelectrochemical characterization of Zn1-xCoxO thin films for solar hydrogen production, J. Comb. Chem. 7 (2), 264 (2005). DOI: 10.1021/cc049864x.
  • K. R. Kittilstved, W. K. Liu, and D. R. Gamelin, Electronic structure origins of polarity-dependent high-TC ferromagnetism in oxide-diluted magnetic semiconductors, Nat. Mater. 5 (4), 291 (2006). DOI: 10.1038/nmat1616.
  • W. Wang et al., Magnetic and optical properties of Co-doped ZnO nanorod arrays, Eur. Phys. J. Plus. 135, 40 (2020).
  • J. Liu et al., Large dielectric constant and Maxwell-Wagner relaxation in Bi2∕3Cu3Ti4O12, Phys. Rev. B. 70 (14), 144106 (2004). DOI: 10.1103/PhysRevB.70.144106.
  • T. Prodromakis and C. Papavassiliou, Engineering the Maxwell–Wagner polarization effect, Appl. Surf. Sci. 255 (15), 6989 (2009). DOI: 10.1016/j.apsusc.2009.03.030.
  • C. G. Koops, On the Dispersion of resistivity and dielectric constant of some semiconductors at audiofrequencies, Phys. Rev. 83 (1), 121 (1951). DOI: 10.1103/PhysRev.83.121.
  • R. Zamiri et al., Influence of Mg doping on dielectric and optical properties of ZnO nano-plates prepared by wet chemical method, Solid State Commun. 195, 74 (2014). DOI: 10.1016/j.ssc.2014.07.011.
  • M. Arshad et al., Exploring the dielectric behavior of Co doped ZnO nanoparticles synthesized by wet chemical route using impedance spectroscopy, J. Alloys Compd. 577, 469 (2013). DOI: 10.1016/j.jallcom.2013.06.035.
  • R. D. Shannon, Dielectric polarizabilities of ions in oxides and fluorides, J. Appl. Phys. 73 (1), 348 (1993). DOI: 10.1063/1.353856.
  • M. Ashokkumar, and S. Muthukumaran, Electrical, dielectric, photoluminescence and magnetic properties of ZnO nanoparticles co-doped with Co and Cu, J. Magn. Magn. Mater. 374, 61 (2015). DOI: 10.1016/j.jmmm.2014.08.023.
  • R. Khan and S. Fashu, Structural, dielectric and magnetic properties of (Al, Ni) co-doped ZnO nanoparticles, J. Mater. Sci. Mater. Electron 28, 4333 (2017). DOI: 10.1007/s10854-016-6058-0.
  • M. M. Hassan et al., Influence of Cr incorporation on structural, dielectric and optical properties of ZnO nanoparticles, J. Ind. Eng. Chem. 21, 283 (2015). DOI: 10.1016/j.jiec.2014.01.047.
  • X. Li et al., High dielectric constant in Al-doped ZnO ceramics using high-pressure treated powders, J. Alloys Compd. 657, 90 (2016). DOI: 10.1016/j.jallcom.2015.10.079.
  • A. Punnoose et al., Bulk to nanoscale magnetism and exchange bias in CuO nanoparticles, Phys. Rev. B. 64 (17), 174420 (2001). DOI: 10.1103/PhysRevB.64.174420.
  • M. A. Garcia et al., Magnetic properties of ZnO nanoparticles, Nano Lett. 7 (6), 1489 (2007). DOI: 10.1021/nl070198m.
  • P. Zhan et al., Oxygen vacancy–induced ferromagnetism in un-doped ZnO thin films, J. Appl. Phys 111 (3), 033501 (2012). DOI: 10.1063/1.3679560.
  • A. Franco et al., Magnetic properties of Co-doped ZnO nanoparticles, J. Mag. Mag. Mat. 426, 347 (2017). DOI: 10.1016/j.jmmm.2016.10.159.
  • N. Doğan, A. Bingölbali, and L. Arda, Preparation, structure and magnetic characterization of Ni doped ZnO nano-particles, Arda J. Magn. Magn. Mater. 373, 226 (2015). DOI: 10.1016/j.jmmm.2014.03.053.
  • R. Saleh, S. P. Prakoso, and A. Fishli, The influence of Fe doping on the structural, magnetic and optical properties of nanocrystalline ZnO particles, J. Magn. Magn. Mater. 324 (5), 665 (2012). DOI: 10.1016/j.jmmm.2011.07.059.
  • R. N. Aljawfi, F. Rahman, and K. M. Batoo, Surface defect mediated magnetic interactions and ferromagnetism in Cr/Co Co-doped ZnO nanoparticles, J. Magn. Magn. Mater. 332, 130 (2013). DOI: 10.1016/j.jmmm.2012.12.014.
  • D. Guruvammal, S. Selvaraj, and S. M. Sundar, Structural, optical and magnetic properties of Co doped ZnO DMS nanoparticles by microwave irradiation method, J. Magn. Magn. Mater. 452, 335 (2018). DOI: 10.1016/j.jmmm.2017.12.097.
  • M. Bouloudenine et al., Bulk Zn1−xCoxO magnetic semiconductors prepared by hydrothermal technique, Chem. Phys. Lett. 397 (1-3), 73 (2004). DOI: 10.1016/j.cplett.2004.08.064.
  • J. H. Park et al., Analysis of oxygen vacancy in Co-doped ZnO using the electron density distribution obtained using MEM, Nanoscale Res Lett 10, 186 (2015). DOI: 10.1186/s11671-015-0887-2.
  • R. K. Singhal et al., Electronic and magnetic properties of Co-doped ZnO diluted magnetic semiconductor, J. Alloys Compd. 496 (1-2), 324 (2010). DOI: 10.1016/j.jallcom.2010.02.005.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.