84
Views
1
CrossRef citations to date
0
Altmetric
Research Article

Structural, electrical, and magnetic properties of Co-substituted Ni1-xCoxFe2O4 (x = 0.1, 0.2, and 0.3) nanocrystalline ferrites

, &
Pages 205-220 | Received 16 Apr 2020, Accepted 25 Nov 2020, Published online: 09 Mar 2021

References

  • E. Schloemann, Advances in ferrite microwave materials and devices, J. Magn. Magn. Mater. 209 (1–3), 15 (2000). DOI: 10.1016/S0304-8853(99)00635-6.
  • S. Sharma et al., Influence of Zn substitution on structural, microstructural and dielectric properties of nanocrystalline nickel ferrites, Mater. Sci. Eng., B. 167 (3), 187 (2010). DOI: 10.1016/j.mseb.2010.02.015.
  • D. R. Patil and B. K. Chougule, Effect of copper substitution on electrical and magnetic properties of NiFe2O4 ferrite, Mater. Chem. Phys. 117 (1), 35 (2009). DOI: 10.1016/j.matchemphys.2008.12.034.
  • R. V. Mangalaraja et al., Magnetic, electrical and dielectric behaviour of Ni0.8Zn0.2Fe2O4 prepared through flash combustion technique, J. Magn. Magn. Mater. 253 (1–2), 56 (2002). DOI: 10.1016/S0304-8853(02)00413-4.
  • L. Le-Zhong et al., Structural, magnetic and electrical properties of Zr substitued NiZnCo ferrite nanopowders, J. Magn. Magn. Mater. 435, 58 (2017). DOI: 10.1016/j.jmmm.2017.03.073.
  • F. Li et al., Stoichiometric synthesis of pure MFe2O4 (M = Mg, Co, and Ni) spinel ferrites from tailored layered double hydroxide (hydrotalcite-like) precursors, Chem. Mater. 16 (8), 1597 (2004). DOI: 10.1021/cm035248c.
  • A. V. Knyazev et al., Structural and magnetic properties of Ni-Zn and Ni-Zn-Co ferrites, J. Magn. Magn. Mater. 435, 9 (2017). DOI: 10.1016/j.jmmm.2017.03.074.
  • S. T. Alone et al., Chemical synthesis, structural and magnetic properties of nano-structured Co–Zn–Fe–Cr ferrite, J. Alloy Compd. 509 (16), 5055 (2011). DOI: 10.1016/j.jallcom.2011.02.006.
  • N. Rezlescu et al., Influence of additives on the properties of a Ni–Zn ferrite with low Curie point, J. Magn. Magn. Mater. 215–216, 194 (2000). DOI: 10.1016/S0304-8853(00)00114-1.
  • S. Dey et al., Role of inhomogeneous cation distribution in magnetic enhancement of nanosized Ni0.35Zn0.65Fe2O4: A structural, magnetic, and hyperfine study, J. Appl. Phys. 114 (9), 093901 (2013). [Database] DOI: 10.1063/1.4819809.
  • J. Jau‐Ho et al., Effects of lead(II) oxide on processing and properties of low?temperature?cofirable Ni?Cu?Zn Ferrite, J. Am. Ceram. Soc. 82, 343 (1999). DOI: 10.1111/j.1551-2916.1999.tb20068.x.
  • W. A. Bayoumy and M. A. Gabal, Synthesis characterization and magnetic properties of Cr-substituted NiCuZn nanocrystalline ferrite, J. Alloy Compd. 506 (1), 205 (2010). DOI: 10.1016/j.jallcom.2010.06.178.
  • X. Y. Tan et al., The effect of Cu content on the structure of Ni1 − xCuxFe2O4 spinels, Mater. Res. Bull 44 (12), 2160 (2009). DOI: 10.1016/j.materresbull.2009.08.018.
  • S. G. Doh et al., Characteristics and synthesis of Cu–Ni ferrite nanopowders by coprecipitation method with ultrasound irradiation, J. Magn. Magn. Mater. 272–276, 2238 (2004). DOI: 10.1016/j.jmmm.2003.12.926.
  • M. S. Anwar, F. Ahmed, and B. H. Koo, Enhanced relative cooling power of Ni1–xZnxFe2O4 (0.0 ⩽ x ⩽ 0.7) ferrites, Acta Mater. 71, 100 (2014). DOI: 10.1016/j.actamat.2014.03.002.
  • S. A. Saafan et al., A.C. and D.C. conductivity of NiZn ferrite nanoparticles in wet and dry conditions, J. Magn. Magn. Mater. 322 (16), 2369 (2010). DOI: 10.1016/j.jmmm.2010.02.039.
  • R. D. Shannon, Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides, Acta Cryst. A. 32 (5), 751 (1976). DOI: 10.1107/S0567739476001551.
  • A. A. Ati, Z. Othaman, and A. Samavati, Influence of cobalt on structural and magnetic properties of nickel ferrite nanoparticles, J. Mol. Struct. 1052, 177 (2013). DOI: 10.1016/j.molstruc.2013.08.040.
  • S. Mazen et al., X-ray analysis and IR absorption spectra of Li-Ge ferrite, Mater. Chem. Phys. 34 (1), 35 (1993). DOI: 10.1016/0254-0584(93)90116-4.
  • M. A. Amer et al., Structural and magnetic characterization of the Mg0.2 − xSrxMn0.8Fe2O4 nanoparticles, J. Magn. Magn. Mater. 363, 60 (2014). DOI: 10.1016/j.jmmm.2014.03.067.
  • N. Singh et al., Synthesis, microstructure, dielectric and magnetic properties of Cu substituted Ni–Li ferrites, J. Magn. Magn. Mater. 323 (5), 486 (2011). DOI: 10.1016/j.jmmm.2010.09.053.
  • M. Penchal Reddy et al., Effect of La substitution on structural and magnetic properties of microwave treated Mg0.35Cu0.05Zn0.60LaxFe2 − xO4 ceramics, Superlattices Microstruct. 56, 99 (2013). DOI: 10.1016/j.spmi.2012.12.019.
  • T. Ramesh, R. S. Shinde, and S. R. Murthy, Synthesis and characterization of nanocrystalline Ni0.94Co0.03Mn0.04Cu0.03Fe1.96–xAlxO4 ferrites for microwave device applications, J. Magn. Magn. Mater. 345, 276 (2013). DOI: 10.1016/j.jmmm.2013.06.041.
  • S. Joshi et al., Structural, magnetic, dielectric and optical properties of nickel ferrite nanoparticles synthesized by co-precipitation method, J. Magn. Magn. Mater. 1076, 55 (2014). DOI: 10.1016/j.molstruc.2014.07.048.
  • J. C. Maxwell, Electricity and Magnetism (Oxford University Press, New York, 1973), Vol. 2, section 828.
  • Muhammad Ajmal et al., Influence of Zinc substitution on structural and electrical properties of Ni1−xZnxFe2O4 ferrites, Materials Science and Engineering: B, 139, 164 (2007). DOI: 10.1016/j.mseb.2007.02.004.
  • Mohd.Hashim et al., Structural, electrical and magnetic properties of Co?Cu ferrite Nanoparticles, J. Alloys Compds, 518, 11 (2012). DOI: 10.1016/j.jallcom.2011.12.017.
  • V. T. Zaspalis et al., The effect of Nb2O5 dopant on the structural and magnetic properties of MnZn-ferrites, J. Magn. Magn. Mater. 250, 98 (2002). DOI: 10.1016/S0304-8853(02)00367-0.
  • S. A. Kanade and V. Puri, Composition dependent resistivity of thick film Ni(1 − x)CoxMn2O4: (0 ≤ x ≤ 1) NTC thermistors, Mater. Lett. 60 (11), 1428 (2006). DOI: 10.1016/j.matlet.2005.11.042.
  • N. Ponpandian, P. Balaya, and A. Narayanasamy, Electrical conductivity and dielectric behaviour of nanocrystalline NiFe2O4 spinel, J. Phys. Condens. Matter. 14 (12), 3221 (2002). DOI: 10.1088/0953-8984/14/12/311.
  • K. F. Niessen, Curie temperature of nickel-zinc ferrites as a function of the nickel-zinc ratio, Physica 17 (11–12), 1033 (1951). DOI: 10.1016/0031-8914(51)90011-0.
  • I. H. Gul and A. Maqsood, Structural, magnetic and electrical properties of cobalt ferrites prepared by the sol–gel route, J. Alloys Compd. 465 (1–2), 227 (2008). DOI: 10.1016/j.jallcom.2007.11.006.
  • A. A. Kadam et al., Structural, morphological, electrical and magnetic properties of Dy doped Ni–Co substitutional spinel ferrite, J. Magn. Magn. Mater. 329, 59 (2013). DOI: 10.1016/j.jmmm.2012.10.008.
  • U. B. Sontu, V. Yelasani, and V. R. R. Musugu, Structural, electrical and magnetic characteristics of nickel substituted cobalt ferrite nano particles, synthesized by self combustion method, J. Magn. Magn. Mater. 374, 376 (2015). DOI: 10.1016/j.jmmm.2014.08.072.
  • S. E. Shirsath et al., Structural and magnetic properties of In3+ substituted NiFe2O4, Mater. Chem. Phys. 117, 163 (2009). DOI: 10.1016/j.matchemphys.2009.05.027.
  • K. Jalaiah et al., Structural, magnetic and electrical properties of nickel doped Mn-Zn spinel ferrite synthesized by sol-gel method, J. Magn. Magn. Mater., 423, 275 (2017). DOI: 10.1016/j.jmmm.2016.09.114.
  • J. S. Ghodake et al., Initial permeability of Zn–Ni–Co ferrite, J. Magn. Magn. Mater. 378, 436 (2015). DOI: 10.1016/j.jmmm.2014.11.041.
  • V. D. Sudheesh et al., Investigation of structural and magnetic properties of Ni0.5Zn0.5Fe2O4 nano powders prepared by self combustion method, Mater. Res. Bull 48 (2), 698 (2013). DOI: 10.1016/j.materresbull.2012.11.023.
  • K. Vijaya Babu et al., Effect of cobalt substitution on structural, electrical and magnetic properties of NiFe2O4, PAC 11 (1), 60 (2017). DOI: 10.2298/PAC1701060V.
  • M. Goodarz Naseri et al., Synthesis and characterization of manganese ferrite nanoparticles by thermal treatment method, J. Magn. Magn. Mater. 323 (13), 1745 (2011). DOI: 10.1016/j.jmmm.2011.01.016.
  • P. P. Hankare et al., Synthesis and characterization of nickel substituted cobalt ferrite nanoparticles by sol–gel auto-combustion method, J. Alloys Compd. 553, 383 (2013). DOI: 10.1016/j.jallcom.2012.11.181.
  • S. Singhal et al., Investigation of structural, magnetic, electrical and optical properties of chromium substituted cobalt ferrites (CoCrxFe2 − xO4, 0⩽x⩽1) synthesized using sol gel auto combustion method, J. Mol. Struct. 1012, 182 (2012). DOI: 10.1016/j.molstruc.2011.12.035.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.