74
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Influence of carbonization on phase transition and electrical conductivity of ferroelectric composite with Rochelle salt inclusion

ORCID Icon
Pages 221-228 | Received 24 Mar 2020, Accepted 25 Nov 2020, Published online: 09 Mar 2021

References

  • S. Agate et al. , Cellulose and nanocellulose-based flexible-hybrid printed electronics and conductive composites - a review, Carbohydr. Polym. 198, 249 (2018). DOI: 10.1016/j.carbpol.2018.06.045.
  • G. Yang et al., Cellulosic scaffolds doped with boron nitride nanosheets for shape-stabilized phase change composites with enhanced thermal conductivity, Int. J. Biol. Macromol. 148, 627 (2020). DOI: 10.1016/j.ijbiomac.2020.01.173.
  • A. C. C. Arantes et al., Bio-based thin films of cellulose nanofibrils and magnetite for potential application in green electronics, Carbohydr. Polym. 207, 100 (2019). DOI: 10.1016/j.carbpol.2018.11.081.
  • R. Tong et al., Highly transparent, weakly hydrophilic and biodegradable cellulose film for flexible electroluminescent devices, Carbohydr. Polym. 227, 115366 (2020). DOI: 10.1016/j.carbpol.2019.115366.
  • M. Lay et al., Smart nanopaper based on cellulose nanofibers with hybrid PEDOT:PSS/polypyrrole for energy storage devices, Carbohydr. Polym. 165, 86 (2017). DOI: 10.1016/j.carbpol.2017.02.043.
  • B. D. Mai et al., Effects of composition ratio on structure and phase transition of ferroelectric nanocomposites from silicon dioxide nanoparticles and triglycine sulfate, Phase Transit. 92, 1 (2019). DOI: 10.1080/01411594.2019.1607343.
  • E. Lemaire, C. Ayela, and A. Atli, Eco-friendly materials for large area piezoelectronics: self-oriented Rochelle salt in wood, Smart Mater. Struct. 27 (2), 025005 (2018). DOI: 10.1088/1361-665X/aaa209.
  • H. T. Nguyen, and B. D. Mai, Study on structure and phase transition of an eco-friendly ferroelectric composite prepared from cellulose nanoparticles mixed with Rochelle salt, Phase Transit. 92 (9), 831 (2019). DOI: 10.1080/01411594.2019.1650931.
  • H. T. Nguyen, B. D. Mai, and M. T. Chau, Effects of hydrogen bonds on dielectric relaxation of composites based on hydrogen-bonded ferroelectrics, Phase Transit. 93 (2), 228 (2020). DOI: 10.1080/01411594.2019.1709122.
  • M. M. Tang, and R. Bacon, Carbonization of cellulose fibers—I. Low temperature pyrolysis, Carbon 2 (3), 211 (1964). DOI: 10.1016/0008-6223(64)90035-1.
  • Y.-R. Rhim et al., Changes in electrical and microstructural properties of microcrystalline cellulose as function of carbonization temperature, Carbon 48 (4), 1012 (2010). DOI: 10.1016/j.carbon.2009.11.020.
  • M. Sevilla, and A. B. Fuertes, The production of carbon materials by hydrothermal carbonization of cellulose, Carbon 47 (9), 2281 (2009). DOI: 10.1016/j.carbon.2009.04.026.
  • B. Deka, and S. Ravi, Study of impedance spectroscopy and electric modulus of PbTi1–xFexO3 (x = 0.0 - 0.3) compounds, J. Alloys Compd. 720, 589 (2017). DOI: 10.1016/j.jallcom.2017.05.295.
  • G. R. Gajula et al., An investigation on the conductivity, electric modulus and scaling behavior of electric modulus of barium titanate-lithium ferrite composite doped with Nb, Gd and Sm, Mater. Chem. Phys. 241, 122347 (2020). DOI: 10.1016/j.matchemphys.2019.122347.
  • J. R. Macdonald, Comments on the electric modulus formalism model and superior alternatives to it for the analysis of the frequency response of ionic conductors, J. Phys. Chem. Solid. 70 (3-4), 546 (2009). DOI: 10.1016/j.jpcs.2008.12.012.
  • D. N. Singh, T. P. Sinha, and D. K. Mahato, Electric modulus, scaling and ac conductivity of La2CuMnO6 double perovskite, J. Alloys Compd. 729, 1226 (2017). DOI: 10.1016/j.jallcom.2017.09.241.
  • Ç. Bilkan et al., Frequency and voltage dependence dielectric properties, ac electrical conductivity and electric modulus profiles in Al/Co3O4-PVA/p-Si structures, Phys. B Cond. Matter 500, 154 (2016). DOI: 10.1016/j.physb.2016.08.001.
  • S. Baryshnikov, E. Stukova, and E. Koroleva, Dielectric properties of the ferroelectric composite (NaNO2)0.9/(BaTiO3)0.1, Compos. Part B Eng. 66, 190 (2014). DOI: 10.1016/j.compositesb.2014.05.005.
  • Z. Yu, and C. Ang, Maxwell–Wagner polarization in ceramic composites BaTiO3–(Ni0.3Zn0.7)Fe2.1O4, J. Appl. Phys. 91 (2), 794 (2002).DOI: 10.1063/1.1421033.
  • V. M. Petrov, M. I. Bichurina, and G. Srinivasanb, Maxwell-Wagner relaxation in magnetoelectric composites, Tech. Phys. Lett. 30 (4), 341 (2004). DOI: 10.1134/1.1748619.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.